!----------------------------------------------------------------------- subroutine calccloc ! ! NCAR Nov 02: Calculate the convection center location (dskofc,offc), ! radius (theta0), dayside entry for cusp location (phid, poten=0), ! and nightside exit (phin, poten=0), and the associated auroral ! radius (arad). (Leave the aurora center as is, dskofa=0, offa=1.) ! 01/11 bae: calccloc has a problem with Bz>0, |Bz/By|>1 conditions where ! multiple cells are possible, so for these conditions, set defaults of: ! theta0 = 10 deg, offc = 4.2 deg, and dskofc = 0 deg (offc and dskofc from 2005 model) ! ! Input phihm: High lat model potential in magnetic coordinates (single level). ! ! (dimension 2 is for south, north hemispheres) ! Calculate crad, offc, dskofc, and phid and phin if possible ! Use Fig 8 of Heelis et al. [JGR, 85, 3315-3324, 1980] ! This shows: arad = 18.7 deg, crad = 16.7 deg (so arad = crad + 2 deg) ! offa = offc = 3 deg (so offa = offc) ! dskofc = 2 deg, dskofa = -0.5 deg (so dskofa = dskofc - 2.5 deg) ! Parameterization defaults for phid (phid(MLT)=9.39 +/- 0.21By - 12) ! and phin (phin(MLT)=23.50 +/- 0.15By - 12) ! (In aurora_cons, phid=0., phin=180.*rtd) ! (For zero By, should be phid=21.39MLT*15*rtd, phin=11.5*15*rtd) ! These are the dimensions and descriptions (corrected phid,n) from aurora.F: ! | theta0(2), ! convection reversal boundary in radians ! | offa(2), ! offset of oval towards 0 MLT relative to magnetic pole (rad) ! | dskofa(2), ! offset of oval in radians towards 18 MLT (f(By)) ! | phid(2), ! dayside convection entrance in MLT-12 converted to radians (f(By)) ! | phin(2), ! night convection entrance in MLT-12 converted to radians (f(By)) ! | rrad(2), ! radius of auroral circle in radians ! | offc(2), ! offset of convection towards 0 MLT relative to mag pole (rad) ! | dskofc(2) ! offset of convection in radians towards 18 MLT (f(By)) ! sunlons(nlat): sun's longitude in dipole coordinates (see sub sunloc) ! ! Additional auroral parameters (see sub aurora_cons): use aurora_module,only: theta0,offa,dskofa,phid,phin,rrad,offc, | dskofc use magfield_module,only: sunlons use input_module,only: ! from user input | byimf, ! By component of IMF (nT) (e.g., 0.) | bzimf ! Bz component of IMF (nT) (e.g., 0.) use cons_module,only: rtd, | ylonm,ylatm ! magnetic grid lons, lats in radians implicit none ! ! Args: ! integer,intent(in) :: nmlat0,nmlat,nmlonp1 ! real,dimension(nmlonp1,nmlat),intent(in) :: phihm ! potential in magnetic ! ! Local: integer :: i,i1,i2,ih,j,j1,j2,k real :: vnx(2,2),hem,mltdn,mltdx,mltnn,mltnx,mltd,mltn integer :: jnx(2,2),inx(2,2),jinx(nmlonp1,2) real :: vinx(nmlonp1,2),latinx(nmlonp1,2),mltinx(nmlonp1,2) integer :: iflgnn,iflgdx,inm3,inp3,ixm3,ixp3,i06,i18 real :: offcn,offcx,offcdeg,dskof,ofdc,crad,arad,crad0,craduse real :: cosl06,sinl06,colat06,cosm06,cosl18,sinl18,colat18,cosm18 ! ! Look at both hemispheres do ih=1,2 ! if (ih .eq. 1) then j1 = 1 j2 = nmlat0 hem = -1. else j1 = nmlat0 + 1 j2 = nmlat hem = 1. endif ! Print out un-revised values: ! write (6,"(1x,'Original convection/oval params (hem,By,off,dsk', ! | ',rad,phid,n=',10f9.4)") hem,byimf,offc(ih)*rtd,offa(ih)*rtd, ! | dskofc(ih)*rtd,dskofa(ih)*rtd,theta0(ih)*rtd,rrad(ih)*rtd, ! | phid(ih)*rtd/15.+12.,phin(ih)*rtd/15.+12. ! Find min/max vnx(ih,1) = 0. vnx(ih,2) = 0. do j=j1,j2 do i=1,nmlonp1-1 if (phihm(i,j) .gt. vnx(ih,2)) then vnx(ih,2) = phihm(i,j) jnx(ih,2) = j inx(ih,2) = i endif if (phihm(i,j) .lt. vnx(ih,1)) then vnx(ih,1) = phihm(i,j) jnx(ih,1) = j inx(ih,1) = i endif enddo ! i=1,nmlonp1-1 enddo ! j=j1,j2 ! 02/10: Calculate weictpoten in kV from Weimer model min/max in V weictpoten(ih) = 0.001 * (vnx(ih,2) - vnx(ih,1)) ! write (6,"(1x,'ih min/max pot,lat,mlt=',i2,3e12.4,2x,3e12.4))") ! | ih,(vnx(ih,i),ylatm(jnx(ih,i)),(ylonm(inx(ih,i))-sunlons(1)) ! | * rtd/15.+12.,i=1,2) ! 01/11 bae: Check to see if Bz positive and |Bz/By|>1: if so, use defaults ! for crad (theta0), offcdeg and dskof to set variables for colath. ! Do not redefine phin and phid, but use defaults from aurora_cons if (bzimf>0 .and. abs(bzimf)>abs(byimf)) then crad0 = 0. crad = 10. offcdeg = 4.2 dskof = 0. else ! Set default values do k=1,2 do i=1,nmlonp1 jinx(i,k) = -99 vinx(i,k) = -999. mltinx(i,k) = -999. latinx(i,k) = -999. enddo ! i=1,nmlonp1 enddo ! k=1,2 ! Find min/max +/-8 hrs (nmlonp1/3) from peaks and +/-4 lats away ! sunlons(nlat): sun's longitude in dipole coordinates (see sub sunloc) in rad ! Min: k = 1 mltdn = -999. mltnn = -999. iflgnn = 0 j1 = jnx(ih,k) - 4 if (j1 .lt. 1) j1 = 1 j2 = jnx(ih,k) + 4 if (j2 .gt. nmlat) j2 = nmlat i1 = inx(ih,k) - nmlonp1/3 if (i1 .lt. 1) i1=1 i2 = inx(ih,k) + nmlonp1/3 if (i2 .gt. nmlonp1) i2=nmlonp1 ! Look at mid-point part ! write (6,"(1x,'k j1,2 i1,2=',5i3)") k,j1,j2,i1,i2 do i=i1,i2 vinx(i,k) = 0. mltinx(i,k) = (ylonm(i)-sunlons(1)) * rtd / 15. + 12. if (mltinx(i,k) .gt. 24.) mltinx(i,k) = mltinx(i,k) - 24. if (mltinx(i,k) .lt. 0.) mltinx(i,k) = mltinx(i,k) + 24. ! MLT is 0.3 MLT apart (24/80=0.3) if (abs(mltinx(i,k)-18.) .lt. 0.15) i18=i do j=j1,j2 if (phihm(i,j) .lt. vinx(i,k)) then vinx(i,k) = phihm(i,j) jinx(i,k) = j latinx(i,k) = ylatm(j) * rtd endif enddo ! j=j1,j2 if (vinx(i,k) .ge. 0.) then ! Look at vinx=0 for low values of i (decreasing time - phid) if (mltinx(i,k) .gt. 4.5 .and. mltinx(i,k) .lt. 16.5) then mltdn = mltinx(i,k) else ! Look at vinx=0 for high values of i (increasing time - phin) if (iflgnn .eq. 0) then mltnn = mltinx(i,k) iflgnn = 1 endif endif endif enddo ! i=i1,i2 ! write (6,"(1x,'knx i j v mlt lat =',3i3,3e12.4)") (k,i, ! | jinx(i,k),vinx(i,k),mltinx(i,k),latinx(i,k),i=i1,i2) ! Now look at i<1 for dusk side: if (inx(ih,k) - nmlonp1/3 .lt. 1) then i1 = inx(ih,k) - nmlonp1/3 + nmlonp1 - 1 i2 = nmlonp1 do i=i1,i2 vinx(i,k) = 0. mltinx(i,k) = (ylonm(i)-sunlons(1)) * rtd / 15. + 12. if (mltinx(i,k) .gt. 24.) mltinx(i,k) = mltinx(i,k) - 24. if (mltinx(i,k) .lt. 0.) mltinx(i,k) = mltinx(i,k) + 24. ! MLT is 0.3 MLT apart (24/80=0.3) if (abs(mltinx(i,k)-18.) .lt. 0.15) i18=i do j=j1,j2 if (phihm(i,j) .lt. vinx(i,k)) then vinx(i,k) = phihm(i,j) jinx(i,k) = j latinx(i,k) = ylatm(j) * rtd endif enddo ! j=j1,j2 if (vinx(i,k) .ge. 0.) then ! Look at vinx=0 for low values of i (decreasing time - phid) if (mltinx(i,k) .gt. 4.5 .and. mltinx(i,k) .lt. 16.5) | mltdn = mltinx(i,k) endif enddo ! i=i1,i2 ! write (6,"(1x,'knx i j v mlt lat =',3i3,3e12.4)") (k,i, ! | jinx(i,k),vinx(i,k),mltinx(i,k),latinx(i,k),i=i1,i2) endif ! Now look at i>nmlonp1 for dusk side: if (inx(ih,k) + nmlonp1/3 .gt. nmlonp1) then i2 = inx(ih,k) + nmlonp1/3 - nmlonp1 + 1 i1 = 1 do i=i1,i2 vinx(i,k) = 0. mltinx(i,k) = (ylonm(i)-sunlons(1)) * rtd / 15. + 12. if (mltinx(i,k) .gt. 24.) mltinx(i,k) = mltinx(i,k) - 24. if (mltinx(i,k) .lt. 0.) mltinx(i,k) = mltinx(i,k) + 24. ! MLT is 0.3 MLT apart (24/80=0.3) if (abs(mltinx(i,k)-18.) .lt. 0.15) i18=i do j=j1,j2 if (phihm(i,j) .lt. vinx(i,k)) then vinx(i,k) = phihm(i,j) jinx(i,k) = j latinx(i,k) = ylatm(j) * rtd endif enddo ! j=j1,j2 if (vinx(i,k) .ge. 0.) then ! Look at vinx=0 for high values of i (increasing time - phin) if (mltinx(i,k) .le. 4.5 .or. mltinx(i,k) .ge. 16.5) then if (iflgnn .eq. 0) then mltnn = mltinx(i,k) iflgnn = 1 endif endif endif enddo ! i=i1,i2 ! write (6,"(1x,'knx i j v mlt lat =',3i3,3e12.4)") (k,i, ! | jinx(i,k),vinx(i,k),mltinx(i,k),latinx(i,k),i=i1,i2) endif ! Max: k = 2 mltnx = -999. mltdx = -999. iflgdx = 0 j1 = jnx(ih,k) - 4 if (j1 .lt. 1) j1 = 1 j2 = jnx(ih,k) + 4 if (j2 .gt. nmlat) j2 = nmlat i1 = inx(ih,k) - nmlonp1/3 if (i1 .lt. 1) i1=1 i2 = inx(ih,k) + nmlonp1/3 if (i2 .gt. nmlonp1) i2=nmlonp1 ! Look at mid-point part ! write (6,"(1x,'k j1,2 i1,2=',5i3)") k,j1,j2,i1,i2 do i=i1,i2 vinx(i,k) = 0. mltinx(i,k) = (ylonm(i)-sunlons(1)) * rtd / 15. + 12. if (mltinx(i,k) .gt. 24.) mltinx(i,k) = mltinx(i,k) - 24. if (mltinx(i,k) .lt. 0.) mltinx(i,k) = mltinx(i,k) + 24. ! MLT is 0.3 MLT apart (24/80=0.3) if (abs(mltinx(i,k)-6.) .lt. 0.15) i06=i do j=j1,j2 if (phihm(i,j) .gt. vinx(i,k)) then vinx(i,k) = phihm(i,j) jinx(i,k) = j latinx(i,k) = ylatm(j) * rtd endif enddo ! j=j1,j2 if (vinx(i,k) .le. 0.) then ! Look at vinx=0 for low values of i (decreasing time - phin) if (mltinx(i,k) .le. 4.5 .or. mltinx(i,k) .ge. 16.5) then mltnx = mltinx(i,k) else ! Look at vinx=0 for high values of i (increasing time - phid) if (iflgdx .eq. 0) then mltdx = mltinx(i,k) iflgdx = 1 endif endif endif enddo ! i=i1,i2 ! write (6,"(1x,'knx i j v mlt lat =',3i3,3e12.4)") (k,i, ! | jinx(i,k),vinx(i,k),mltinx(i,k),latinx(i,k),i=i1,i2) ! Now look at i<1 for dawn side: if (inx(ih,k) - nmlonp1/3 .lt. 1) then i1 = inx(ih,k) - nmlonp1/3 + nmlonp1 - 1 i2 = nmlonp1 do i=i1,i2 vinx(i,k) = 0. mltinx(i,k) = (ylonm(i)-sunlons(1)) * rtd / 15. + 12. if (mltinx(i,k) .gt. 24.) mltinx(i,k) = mltinx(i,k) - 24. if (mltinx(i,k) .lt. 0.) mltinx(i,k) = mltinx(i,k) + 24. ! MLT is 0.3 MLT apart (24/80=0.3) if (abs(mltinx(i,k)-6.) .lt. 0.15) i06=i do j=j1,j2 if (phihm(i,j) .gt. vinx(i,k)) then vinx(i,k) = phihm(i,j) jinx(i,k) = j latinx(i,k) = ylatm(j) * rtd endif enddo ! j=j1,j2 ! Look at vinx=0 for low values of i (decreasing time - phin) if (vinx(i,k) .le. 0.) then if (mltinx(i,k) .le. 4.5 .or. mltinx(i,k) .ge. 16.5) | mltnx = mltinx(i,k) endif enddo ! i=i1,i2 ! write (6,"(1x,'knx i j v mlt lat =',3i3,3e12.4)") (k,i, ! | jinx(i,k),vinx(i,k),mltinx(i,k),latinx(i,k),i=i1,i2) endif ! Now look at i>nmlonp1 for dawn side: if (inx(ih,k) + nmlonp1/3 .gt. nmlonp1) then i2 = inx(ih,k) + nmlonp1/3 - nmlonp1 + 1 i1 = 1 do i=i1,i2 vinx(i,k) = 0. mltinx(i,k) = (ylonm(i)-sunlons(1)) * rtd / 15. + 12. if (mltinx(i,k) .gt. 24.) mltinx(i,k) = mltinx(i,k) - 24. if (mltinx(i,k) .lt. 0.) mltinx(i,k) = mltinx(i,k) + 24. ! MLT is 0.3 MLT apart (24/80=0.3) if (abs(mltinx(i,k)-6.) .lt. 0.15) i06=i do j=j1,j2 if (phihm(i,j) .gt. vinx(i,k)) then vinx(i,k) = phihm(i,j) jinx(i,k) = j latinx(i,k) = ylatm(j) * rtd endif enddo ! j=j1,j2 if (vinx(i,k) .le. 0.) then ! Look at vinx=0 for high values of i (increasing time - phid) if (mltinx(i,k) .gt. 4.5 .and. mltinx(i,k) .lt. 16.5) then if (iflgdx .eq. 0) then mltdx = mltinx(i,k) iflgdx = 1 endif endif endif enddo ! i=i1,i2 ! write (6,"(1x,'knx i j v mlt lat =',3i3,3e12.4)") (k,i, ! | jinx(i,k),vinx(i,k),mltinx(i,k),latinx(i,k),i=i1,i2) endif ! Now look at vinx=0 to find phid,n ! Have mltdx,n from 4.5 to 16.5 MLT (or -999.) if (mltdx .ge. 0. .or. mltdn .ge. 0.) then if (mltdx*mltdn .ge. 0.) mltd = 0.5*(mltdx+mltdn) if (mltdx .ge. 0. .and. mltdn .lt. 0.) mltd = mltdx if (mltdn .ge. 0. .and. mltdx .lt. 0.) mltd = mltdn else ! Use parameterization defaults for phid (phid(MLT)=9.39 +/- 0.21By - 12) ! and phin (phin(MLT)=23.50 +/- 0.15By - 12) mltd = 9.39 - hem*0.21*byimf endif phid(ih) = (mltd-12.) * 15. / rtd if (mltnx .ge. 0. .or. mltnn .ge. 0.) then ! Make mltnx,n from 16.5 to 28.5 MLT (or -999.) if (mltnx .ge. 0. .and. mltnx .lt. 12.) mltnx = mltnx + 24. if (mltnn .ge. 0. .and. mltnn .lt. 12.) mltnn = mltnn + 24. if (mltnx*mltnn .ge. 0.) mltn = 0.5*(mltnx+mltnn) if (mltnx .ge. 0. .and. mltnn .lt. 0.) mltn = mltnx if (mltnn .ge. 0. .and. mltnx .lt. 0.) mltn = mltnn else ! Use parameterization defaults for phid (phid(MLT)=9.39 +/- 0.21By - 12) ! and phin (phin(MLT)=23.50 +/- 0.15By - 12) mltn = 23.50 - hem*0.15*byimf endif phin(ih) = (mltn-12.) * 15. / rtd ! write (6,"(1x,'mltd,n,x mltn,n,x phid,n =',8e12.4)") ! | mltd,mltdn,mltdx,mltn,mltnn,mltnx,phid(ih),phin(ih) ! Estimate dskofc from lat of peak at 6 and 18 MLT (colat(18-6), lat(6-18)) dskof = abs(latinx(i06,2)) - abs(latinx(i18,1)) ! Estimate offc from lat of peak +/-3 hrs from each maximum ! (In colat, is nighside-dayside, but in lat is dayside-nightside) inm3 = inx(ih,1) - (nmlonp1-1)/8 inp3 = inx(ih,1) + (nmlonp1-1)/8 ixm3 = inx(ih,2) - (nmlonp1-1)/8 ixp3 = inx(ih,2) + (nmlonp1-1)/8 if (inm3 .lt. 1) inm3 = inm3 + nmlonp1 - 1 if (inp3 .gt. nmlonp1) inp3 = inp3 - nmlonp1 + 1 if (ixm3 .lt. 1) ixm3 = ixm3 + nmlonp1 - 1 if (ixp3 .gt. nmlonp1) ixp3 = ixp3 - nmlonp1 + 1 offcn = abs(latinx(inm3,1)) - abs(latinx(inp3,1)) offcx = abs(latinx(ixp3,2)) - abs(latinx(ixm3,2)) ! 07/03: Correction to make sure offset is at least 0.5 deg towards 0 MLT ! offcdeg = 0.5*(offcn+offcx) offcdeg = max(0.5,0.5*(offcn+offcx)) ! Estimate theta0 from 6-18 MLT line first crad0 = 90. - 0.5*abs(latinx(i18,1)+latinx(i06,2)) ! Estimate theta0 from 6-18 MLT line in 'convection circle coordinates' ! Transform to convection circle coordinates: ofdc = sqrt(offcdeg**2+dskof**2) sinl18 = sin(abs(latinx(i18,1))/rtd) cosl18 = cos(abs(latinx(i18,1))/rtd) cosm18 = cos(mltinx(i18,1)*15./rtd+asin(dskof/ofdc)) colat18 = cos(ofdc/rtd)*sinl18-sin(ofdc/rtd)*cosl18*cosm18 colat18 = acos(colat18)*rtd ! write (6,"(1x,'18 sinl,cosl,cosm,colat asin=',5e12.4)") ! | sinl18,cosl18,cosm18,colat18,asin(dskof/ofdc) sinl06 = sin(abs(latinx(i06,2))/rtd) cosl06 = cos(abs(latinx(i06,2))/rtd) cosm06 = cos(mltinx(i06,2)*15./rtd+asin(dskof/ofdc)) colat06 = cos(ofdc/rtd)*sinl06-sin(ofdc/rtd)*cosl06*cosm06 colat06 = acos(colat06)*rtd ! write (6,"(1x,'06 sinl,cosl,cosm,colat asin=',5e12.4)") ! | sinl06,cosl06,cosm06,colat06,asin(dskof/ofdc) crad = 0.5*(colat18+colat06) endif ! of using defaults for Bz>0, |Bz|>|By| ! Make sure crad is largest of crad and crad0 craduse = max(crad,crad0) if (craduse .gt. crad) write (6,"(1x,'Used crad0 from 6-18', | 'instead of calc crad =',2e12.4)") crad0,crad arad = craduse + 2. theta0(ih) = craduse / rtd rrad(ih) = arad / rtd ! write (6,"(1x,'radius: 0,18,06,c,a deg,rad=',7e12.4)")crad0, ! | colat18,colat06,crad,arad,theta0(ih),rrad(ih) ! offc(ih) = offcdeg / rtd offa(ih) = offcdeg / rtd ! write (6,"(1x,'min/max latd3,n3 offc =',8e12.4)") ! | latinx(inm3,1),latinx(inp3,1),offcn,latinx(ixp3,2), ! | latinx(ixm3,2),offcx,offcdeg,offc(ih) ! oval offset is 2.5 deg towards dawn (more neg dskof) dskofc(ih) = dskof / rtd dskofa(ih) = (dskof-2.5) / rtd ! write (6,"(1x,'18,06 mlt,lat dskof,c,a=',7e12.4)") ! | mltinx(i18,1),latinx(i18,1),mltinx(i06,2),latinx(i06,2), ! | dskof,dskofc(ih),dskofa(ih) ! Print out revised values: ! write (6,"('Revised convection/oval params hem,By,off,dsk,', ! | 'rad,phid,n=',i2,9e12.4)")ih,byimf,offc(ih)*rtd,offa(ih)*rtd, ! | dskofc(ih)*rtd,dskofa(ih)*rtd,theta0(ih)*rtd,rrad(ih)*rtd, ! | phid(ih)*rtd/15.+12.,phin(ih)*rtd/15.+12. enddo ! ih=1,2 return end subroutine calccloc !-----------------------------------------------------------------------