! ! This software is part of the NCAR TIE-GCM. Use is governed by the ! Open Source Academic Research License Agreement contained in the file ! tiegcmlicense.txt. ! ! 1/00: ! This is source for fft991 from lib ecmfft (fft99f.f) ! This source does NOT work under multi-tasked unicos -- must ! use the lib version (i.e., do not compile this source under ! unicos). However, this source DOES appear to work ! on non-unicos platforms (e.g., multi-tasked irix). ! The main entry in this file, FFT991, has been changed to FFT999. ! On unicos, FFT991 will be called (the lib version), and on ! non-unicos, FFT999 will be called (this source). ! Later, on non-unicos platforms, other fft's should be called, ! optimized for those machines. Better, a single fft that works ! multi-tasked on all platforms should be found. ! See also SET99 (SET999). ! SUBROUTINE FFT99(A,na,WORK,nw,TRIGS,ntrigs,IFAX,INC,JUMP,N,LOT, | ISIGN) C C PURPOSE PERFORMS MULTIPLE FAST FOURIER TRANSFORMS. THIS PACKAGE C WILL PERFORM A NUMBER OF SIMULTANEOUS REAL/HALF-COMPLEX C PERIODIC FOURIER TRANSFORMS OR CORRESPONDING INVERSE C TRANSFORMS, I.E. GIVEN A SET OF REAL DATA VECTORS, THE C PACKAGE RETURNS A SET OF 'HALF-COMPLEX' FOURIER C COEFFICIENT VECTORS, OR VICE VERSA. THE LENGTH OF THE C TRANSFORMS MUST BE AN EVEN NUMBER GREATER THAN 4 THAT HAS C NO OTHER FACTORS EXCEPT POSSIBLY POWERS OF 2, 3, AND 5. C THIS IS AN ALL-FORTRAN VERSION OF A OPTIMIZED ROUTINE C FFT99 WRITTEN FOR XMP/YMPs BY DR. CLIVE TEMPERTON OF C ECMWF. C C THE PACKAGE FFT99F CONTAINS SEVERAL USER-LEVEL ROUTINES: C C SUBROUTINE SET99 C AN INITIALIZATION ROUTINE THAT MUST BE CALLED ONCE C BEFORE A SEQUENCE OF CALLS TO THE FFT ROUTINES C (PROVIDED THAT N IS NOT CHANGED). C C SUBROUTINES FFT99 AND FFT991 C TWO FFT ROUTINES THAT RETURN SLIGHTLY DIFFERENT C ARRANGEMENTS OF THE DATA IN GRIDPOINT SPACE. C C USAGE LET N BE OF THE FORM 2**P * 3**Q * 5**R, WHERE P .GE. 1, C Q .GE. 0, AND R .GE. 0. THEN A TYPICAL SEQUENCE OF C CALLS TO TRANSFORM A GIVEN SET OF REAL VECTORS OF LENGTH C N TO A SET OF 'HALF-COMPLEX' FOURIER COEFFICIENT VECTORS C OF LENGTH N IS C C DIMENSION IFAX(13),TRIGS(3*N/2+1),A(M*(N+2)), C + WORK(M*(N+1)) C C CALL SET99 (TRIGS, IFAX, N) C CALL FFT99 (A,WORK,TRIGS,IFAX,INC,JUMP,N,M,ISIGN) C C SEE THE INDIVIDUAL WRITE-UPS FOR SET99, FFT99, AND C FFT991 BELOW, FOR A DETAILED DESCRIPTION OF THE C ARGUMENTS. C C HISTORY THE PACKAGE WAS WRITTEN BY CLIVE TEMPERTON AT ECMWF IN C NOVEMBER, 1978. IT WAS MODIFIED, DOCUMENTED, AND TESTED C FOR NCAR BY RUSS REW IN SEPTEMBER, 1980. C C----------------------------------------------------------------------- C C SUBROUTINE SET99 (TRIGS, IFAX, N) C C PURPOSE A SET-UP ROUTINE FOR FFT99 AND FFT991. IT NEED ONLY BE C CALLED ONCE BEFORE A SEQUENCE OF CALLS TO THE FFT C ROUTINES (PROVIDED THAT N IS NOT CHANGED). C C ARGUMENT IFAX(13),TRIGS(3*N/2+1) C DIMENSIONS C C ARGUMENTS C C ON INPUT TRIGS C A FLOATING POINT ARRAY OF DIMENSION 3*N/2 IF N/2 IS C EVEN, OR 3*N/2+1 IF N/2 IS ODD. C C IFAX C AN INTEGER ARRAY. THE NUMBER OF ELEMENTS ACTUALLY USED C WILL DEPEND ON THE FACTORIZATION OF N. DIMENSIONING C IFAX FOR 13 SUFFICES FOR ALL N LESS THAN A MILLION. C C N C AN EVEN NUMBER GREATER THAN 4 THAT HAS NO PRIME FACTOR C GREATER THAN 5. N IS THE LENGTH OF THE TRANSFORMS (SEE C THE DOCUMENTATION FOR FFT99 AND FFT991 FOR THE C DEFINITIONS OF THE TRANSFORMS). C C ON OUTPUT IFAX C CONTAINS THE FACTORIZATION OF N/2. IFAX(1) IS THE C NUMBER OF FACTORS, AND THE FACTORS THEMSELVES ARE STORED C IN IFAX(2),IFAX(3),... IF SET99 IS CALLED WITH N ODD, C OR IF N HAS ANY PRIME FACTORS GREATER THAN 5, IFAX(1) C IS SET TO -99. C C TRIGS C AN ARRAY OF TRIGONOMETRIC FUNCTION VALUES SUBSEQUENTLY C USED BY THE FFT ROUTINES. C C----------------------------------------------------------------------- C C SUBROUTINE FFT991 (A,WORK,TRIGS,IFAX,INC,JUMP,N,M,ISIGN) C AND C SUBROUTINE FFT99 (A,WORK,TRIGS,IFAX,INC,JUMP,N,M,ISIGN) C C PURPOSE PERFORM A NUMBER OF SIMULTANEOUS REAL/HALF-COMPLEX C PERIODIC FOURIER TRANSFORMS OR CORRESPONDING INVERSE C TRANSFORMS, USING ORDINARY SPATIAL ORDER OF GRIDPOINT C VALUES (FFT991) OR EXPLICIT CYCLIC CONTINUITY IN THE C GRIDPOINT VALUES (FFT99). GIVEN A SET C OF REAL DATA VECTORS, THE PACKAGE RETURNS A SET OF C 'HALF-COMPLEX' FOURIER COEFFICIENT VECTORS, OR VICE C VERSA. THE LENGTH OF THE TRANSFORMS MUST BE AN EVEN C NUMBER THAT HAS NO OTHER FACTORS EXCEPT POSSIBLY POWERS C OF 2, 3, AND 5. THIS IS AN ALL-FORTRAN VERSION OF C OPTIMIZED ROUTINE FFT991 WRITTEN FOR XMP/YMPs BY C DR. CLIVE TEMPERTON OF ECMWF. C C ARGUMENT A(M*(N+2)), WORK(M*(N+1)), TRIGS(3*N/2+1), IFAX(13) C DIMENSIONS C C ARGUMENTS C C ON INPUT A C AN ARRAY OF LENGTH M*(N+2) CONTAINING THE INPUT DATA C OR COEFFICIENT VECTORS. THIS ARRAY IS OVERWRITTEN BY C THE RESULTS. C C WORK C A WORK ARRAY OF DIMENSION M*(N+1) C C TRIGS C AN ARRAY SET UP BY SET99, WHICH MUST BE CALLED FIRST. C C IFAX C AN ARRAY SET UP BY SET99, WHICH MUST BE CALLED FIRST. C C INC C THE INCREMENT (IN WORDS) BETWEEN SUCCESSIVE ELEMENTS OF C EACH DATA OR COEFFICIENT VECTOR (E.G. INC=1 FOR C CONSECUTIVELY STORED DATA). C C JUMP C THE INCREMENT (IN WORDS) BETWEEN THE FIRST ELEMENTS OF C SUCCESSIVE DATA OR COEFFICIENT VECTORS. ON CRAYS, C TRY TO ARRANGE DATA SO THAT JUMP IS NOT A MULTIPLE OF 8 C (TO AVOID MEMORY BANK CONFLICTS). FOR CLARIFICATION OF C INC AND JUMP, SEE THE EXAMPLES BELOW. C C N C THE LENGTH OF EACH TRANSFORM (SEE DEFINITION OF C TRANSFORMS, BELOW). C C M C THE NUMBER OF TRANSFORMS TO BE DONE SIMULTANEOUSLY. C C ISIGN C = +1 FOR A TRANSFORM FROM FOURIER COEFFICIENTS TO C GRIDPOINT VALUES. C = -1 FOR A TRANSFORM FROM GRIDPOINT VALUES TO FOURIER C COEFFICIENTS. C C ON OUTPUT A C IF ISIGN = +1, AND M COEFFICIENT VECTORS ARE SUPPLIED C EACH CONTAINING THE SEQUENCE: C C A(0),B(0),A(1),B(1),...,A(N/2),B(N/2) (N+2 VALUES) C C THEN THE RESULT CONSISTS OF M DATA VECTORS EACH C CONTAINING THE CORRESPONDING N+2 GRIDPOINT VALUES: C C FOR FFT991, X(0), X(1), X(2),...,X(N-1),0,0. C FOR FFT99, X(N-1),X(0),X(1),X(2),...,X(N-1),X(0). C (EXPLICIT CYCLIC CONTINUITY) C C WHEN ISIGN = +1, THE TRANSFORM IS DEFINED BY: C X(J)=SUM(K=0,...,N-1)(C(K)*EXP(2*I*J*K*PI/N)) C WHERE C(K)=A(K)+I*B(K) AND C(N-K)=A(K)-I*B(K) C AND I=SQRT (-1) C C IF ISIGN = -1, AND M DATA VECTORS ARE SUPPLIED EACH C CONTAINING A SEQUENCE OF GRIDPOINT VALUES X(J) AS C DEFINED ABOVE, THEN THE RESULT CONSISTS OF M VECTORS C EACH CONTAINING THE CORRESPONDING FOURIER COFFICIENTS C A(K), B(K), 0 .LE. K .LE N/2. C C WHEN ISIGN = -1, THE INVERSE TRANSFORM IS DEFINED BY: C C(K)=(1/N)*SUM(J=0,...,N-1)(X(J)*EXP(-2*I*J*K*PI/N)) C WHERE C(K)=A(K)+I*B(K) AND I=SQRT(-1) C C A CALL WITH ISIGN=+1 FOLLOWED BY A CALL WITH ISIGN=-1 C (OR VICE VERSA) RETURNS THE ORIGINAL DATA. C C NOTE: THE FACT THAT THE GRIDPOINT VALUES X(J) ARE REAL C IMPLIES THAT B(0)=B(N/2)=0. FOR A CALL WITH ISIGN=+1, C IT IS NOT ACTUALLY NECESSARY TO SUPPLY THESE ZEROS. C C EXAMPLES GIVEN 19 DATA VECTORS EACH OF LENGTH 64 (+2 FOR EXPLICIT C CYCLIC CONTINUITY), COMPUTE THE CORRESPONDING VECTORS OF C FOURIER COEFFICIENTS. THE DATA MAY, FOR EXAMPLE, BE C ARRANGED LIKE THIS: C C FIRST DATA A(1)= . . . A(66)= A(70) C VECTOR X(63) X(0) X(1) X(2) ... X(63) X(0) (4 EMPTY LOCATIONS) C C SECOND DATA A(71)= . . . A(140) C VECTOR X(63) X(0) X(1) X(2) ... X(63) X(0) (4 EMPTY LOCATIONS) C C AND SO ON. HERE INC=1, JUMP=70, N=64, M=19, ISIGN=-1, C AND FFT99 SHOULD BE USED (BECAUSE OF THE EXPLICIT CYCLIC C CONTINUITY). C C ALTERNATIVELY THE DATA MAY BE ARRANGED LIKE THIS: C C FIRST SECOND LAST C DATA DATA DATA C VECTOR VECTOR VECTOR C C A(1)= A(2)= A(19)= C C X(63) X(63) . . . X(63) C A(20)= X(0) X(0) . . . X(0) C A(39)= X(1) X(1) . . . X(1) C . . . C . . . C . . . C C IN WHICH CASE WE HAVE INC=19, JUMP=1, AND THE REMAINING C PARAMETERS ARE THE SAME AS BEFORE. IN EITHER CASE, EACH C COEFFICIENT VECTOR OVERWRITES THE CORRESPONDING INPUT C DATA VECTOR. C C----------------------------------------------------------------------- DIMENSION A(na),WORK(nw),TRIGS(ntrigs),IFAX(13) C C SUBROUTINE "FFT99" - MULTIPLE FAST REAL PERIODIC TRANSFORM C CORRESPONDING TO OLD SCALAR ROUTINE FFT9 C PROCEDURE USED TO CONVERT TO HALF-LENGTH COMPLEX TRANSFORM C IS GIVEN BY COOLEY, LEWIS AND WELCH (J. SOUND VIB., VOL. 12 C (1970), 315-337) C C A IS THE ARRAY CONTAINING INPUT AND OUTPUT DATA C WORK IS AN AREA OF SIZE (N+1)*LOT C TRIGS IS A PREVIOUSLY PREPARED LIST OF TRIG FUNCTION VALUES C IFAX IS A PREVIOUSLY PREPARED LIST OF FACTORS OF N/2 C INC IS THE INCREMENT WITHIN EACH DATA 'VECTOR' C (E.G. INC=1 FOR CONSECUTIVELY STORED DATA) C JUMP IS THE INCREMENT BETWEEN THE START OF EACH DATA VECTOR C N IS THE LENGTH OF THE DATA VECTORS C LOT IS THE NUMBER OF DATA VECTORS C ISIGN = +1 FOR TRANSFORM FROM SPECTRAL TO GRIDPOINT C = -1 FOR TRANSFORM FROM GRIDPOINT TO SPECTRAL C C ORDERING OF COEFFICIENTS: C A(0),B(0),A(1),B(1),A(2),B(2),...,A(N/2),B(N/2) C WHERE B(0)=B(N/2)=0; (N+2) LOCATIONS REQUIRED C C ORDERING OF DATA: C X(N-1),X(0),X(1),X(2),...,X(N),X(0) C I.E. EXPLICIT CYCLIC CONTINUITY; (N+2) LOCATIONS REQUIRED C C VECTORIZATION IS ACHIEVED ON CRAY BY DOING THE TRANSFORMS IN C PARALLEL C C *** N.B. N IS ASSUMED TO BE AN EVEN NUMBER C C DEFINITION OF TRANSFORMS: C ------------------------- C C ISIGN=+1: X(J)=SUM(K=0,...,N-1)(C(K)*EXP(2*I*J*K*PI/N)) C WHERE C(K)=A(K)+I*B(K) AND C(N-K)=A(K)-I*B(K) C C ISIGN=-1: A(K)=(1/N)*SUM(J=0,...,N-1)(X(J)*COS(2*J*K*PI/N)) C B(K)=-(1/N)*SUM(J=0,...,N-1)(X(J)*SIN(2*J*K*PI/N)) C C C C NFAX=IFAX(1) NX=N+1 NH=N/2 INK=INC+INC IF (ISIGN.EQ.+1) GO TO 30 C C IF NECESSARY, TRANSFER DATA TO WORK AREA IGO=50 IF (MOD(NFAX,2).EQ.1) GOTO 40 IBASE=INC+1 JBASE=1 DO 20 L=1,LOT I=IBASE J=JBASE CDIR$ IVDEP DO 10 M=1,N WORK(J)=A(I) I=I+INC J=J+1 10 CONTINUE IBASE=IBASE+JUMP JBASE=JBASE+NX 20 CONTINUE C IGO=60 GO TO 40 C C PREPROCESSING (ISIGN=+1) C ------------------------ C 30 CONTINUE CALL FFT99A(A,na,WORK,nw,TRIGS,ntrigs,INC,JUMP,N,LOT) IGO=60 C C COMPLEX TRANSFORM C ----------------- C 40 CONTINUE IA=INC+1 LA=1 DO 80 K=1,NFAX IF (IGO.EQ.60) GO TO 60 50 CONTINUE CALL VPASSM(A(IA),A(IA+INC),WORK(1),WORK(2),TRIGS, * ntrigs,INK,2,JUMP,NX,LOT,NH,IFAX(K+1),LA) IGO=60 GO TO 70 60 CONTINUE CALL VPASSM(WORK(1),WORK(2),A(IA),A(IA+INC),TRIGS, * ntrigs,2,INK,NX,JUMP,LOT,NH,IFAX(K+1),LA) IGO=50 70 CONTINUE LA=LA*IFAX(K+1) 80 CONTINUE C IF (ISIGN.EQ.-1) GO TO 130 C C IF NECESSARY, TRANSFER DATA FROM WORK AREA IF (MOD(NFAX,2).EQ.1) GO TO 110 IBASE=1 JBASE=IA DO 100 L=1,LOT I=IBASE J=JBASE CDIR$ IVDEP DO 90 M=1,N A(J)=WORK(I) I=I+1 J=J+INC 90 CONTINUE IBASE=IBASE+NX JBASE=JBASE+JUMP 100 CONTINUE C C FILL IN CYCLIC BOUNDARY POINTS 110 CONTINUE IA=1 IB=N*INC+1 CDIR$ IVDEP DO 120 L=1,LOT A(IA)=A(IB) A(IB+INC)=A(IA+INC) IA=IA+JUMP IB=IB+JUMP 120 CONTINUE GO TO 140 C C POSTPROCESSING (ISIGN=-1): C -------------------------- C 130 CONTINUE CALL FFT99B(WORK,nw,A,na,TRIGS,ntrigs,INC,JUMP,N,LOT) C 140 CONTINUE RETURN END SUBROUTINE FFT99A(A,na,WORK,nw,TRIGS,ntrigs,INC,JUMP,N,LOT) DIMENSION A(na),WORK(nw),TRIGS(ntrigs) C C SUBROUTINE FFT99A - PREPROCESSING STEP FOR FFT99, ISIGN=+1 C (SPECTRAL TO GRIDPOINT TRANSFORM) C NH=N/2 NX=N+1 INK=INC+INC C C A(0) AND A(N/2) IA=1 IB=N*INC+1 JA=1 JB=2 CDIR$ IVDEP DO 10 L=1,LOT WORK(JA)=A(IA)+A(IB) WORK(JB)=A(IA)-A(IB) IA=IA+JUMP IB=IB+JUMP JA=JA+NX JB=JB+NX 10 CONTINUE C C REMAINING WAVENUMBERS IABASE=2*INC+1 IBBASE=(N-2)*INC+1 JABASE=3 JBBASE=N-1 C DO 30 K=3,NH,2 IA=IABASE IB=IBBASE JA=JABASE JB=JBBASE C=TRIGS(N+K) S=TRIGS(N+K+1) CDIR$ IVDEP DO 20 L=1,LOT WORK(JA)=(A(IA)+A(IB))- * (S*(A(IA)-A(IB))+C*(A(IA+INC)+A(IB+INC))) WORK(JB)=(A(IA)+A(IB))+ * (S*(A(IA)-A(IB))+C*(A(IA+INC)+A(IB+INC))) WORK(JA+1)=(C*(A(IA)-A(IB))-S*(A(IA+INC)+A(IB+INC)))+ * (A(IA+INC)-A(IB+INC)) WORK(JB+1)=(C*(A(IA)-A(IB))-S*(A(IA+INC)+A(IB+INC)))- * (A(IA+INC)-A(IB+INC)) IA=IA+JUMP IB=IB+JUMP JA=JA+NX JB=JB+NX 20 CONTINUE IABASE=IABASE+INK IBBASE=IBBASE-INK JABASE=JABASE+2 JBBASE=JBBASE-2 30 CONTINUE C IF (IABASE.NE.IBBASE) GO TO 50 C WAVENUMBER N/4 (IF IT EXISTS) IA=IABASE JA=JABASE CDIR$ IVDEP DO 40 L=1,LOT WORK(JA)=2.0*A(IA) WORK(JA+1)=-2.0*A(IA+INC) IA=IA+JUMP JA=JA+NX 40 CONTINUE C 50 CONTINUE RETURN END SUBROUTINE FFT99B(WORK,nw,A,na,TRIGS,ntrigs,INC,JUMP,N,LOT) DIMENSION WORK(nw),A(na),TRIGS(ntrigs) C C SUBROUTINE FFT99B - POSTPROCESSING STEP FOR FFT99, ISIGN=-1 C (GRIDPOINT TO SPECTRAL TRANSFORM) C NH=N/2 NX=N+1 INK=INC+INC C C A(0) AND A(N/2) SCALE=1.0/FLOAT(N) IA=1 IB=2 JA=1 JB=N*INC+1 CDIR$ IVDEP DO 10 L=1,LOT A(JA)=SCALE*(WORK(IA)+WORK(IB)) A(JB)=SCALE*(WORK(IA)-WORK(IB)) A(JA+INC)=0.0 A(JB+INC)=0.0 IA=IA+NX IB=IB+NX JA=JA+JUMP JB=JB+JUMP 10 CONTINUE C C REMAINING WAVENUMBERS SCALE=0.5*SCALE IABASE=3 IBBASE=N-1 JABASE=2*INC+1 JBBASE=(N-2)*INC+1 C DO 30 K=3,NH,2 IA=IABASE IB=IBBASE JA=JABASE JB=JBBASE C=TRIGS(N+K) S=TRIGS(N+K+1) CDIR$ IVDEP DO 20 L=1,LOT A(JA)=SCALE*((WORK(IA)+WORK(IB)) * +(C*(WORK(IA+1)+WORK(IB+1))+S*(WORK(IA)-WORK(IB)))) A(JB)=SCALE*((WORK(IA)+WORK(IB)) * -(C*(WORK(IA+1)+WORK(IB+1))+S*(WORK(IA)-WORK(IB)))) A(JA+INC)=SCALE*((C*(WORK(IA)-WORK(IB))-S*(WORK(IA+1)+WORK(IB+1))) * +(WORK(IB+1)-WORK(IA+1))) A(JB+INC)=SCALE*((C*(WORK(IA)-WORK(IB))-S*(WORK(IA+1)+WORK(IB+1))) * -(WORK(IB+1)-WORK(IA+1))) IA=IA+NX IB=IB+NX JA=JA+JUMP JB=JB+JUMP 20 CONTINUE IABASE=IABASE+2 IBBASE=IBBASE-2 JABASE=JABASE+INK JBBASE=JBBASE-INK 30 CONTINUE C IF (IABASE.NE.IBBASE) GO TO 50 C WAVENUMBER N/4 (IF IT EXISTS) IA=IABASE JA=JABASE SCALE=2.0*SCALE CDIR$ IVDEP DO 40 L=1,LOT A(JA)=SCALE*WORK(IA) A(JA+INC)=-SCALE*WORK(IA+1) IA=IA+NX JA=JA+JUMP 40 CONTINUE C 50 CONTINUE RETURN END ! ! 1/00: Name of this routine is changed so that on unicos, the lib ! version of FFT991 will be used, and non-unicos machines will call ! FFT999 (this source). See comments at top of this file. ! ! SUBROUTINE FFT991(A,WORK,TRIGS,IFAX,INC,JUMP,N,LOT,ISIGN) SUBROUTINE FFT999(A,na,WORK,nw,TRIGS,ntrigs,IFAX,INC,JUMP,N,LOT, | ISIGN) DIMENSION A(na),WORK(nw),TRIGS(ntrigs),IFAX(13) C C SUBROUTINE "FFT991" - MULTIPLE REAL/HALF-COMPLEX PERIODIC C FAST FOURIER TRANSFORM C C SAME AS FFT99 EXCEPT THAT ORDERING OF DATA CORRESPONDS TO C THAT IN MRFFT2 C C PROCEDURE USED TO CONVERT TO HALF-LENGTH COMPLEX TRANSFORM C IS GIVEN BY COOLEY, LEWIS AND WELCH (J. SOUND VIB., VOL. 12 C (1970), 315-337) C C A IS THE ARRAY CONTAINING INPUT AND OUTPUT DATA C WORK IS AN AREA OF SIZE (N+1)*LOT C TRIGS IS A PREVIOUSLY PREPARED LIST OF TRIG FUNCTION VALUES C IFAX IS A PREVIOUSLY PREPARED LIST OF FACTORS OF N/2 C INC IS THE INCREMENT WITHIN EACH DATA 'VECTOR' C (E.G. INC=1 FOR CONSECUTIVELY STORED DATA) C JUMP IS THE INCREMENT BETWEEN THE START OF EACH DATA VECTOR C N IS THE LENGTH OF THE DATA VECTORS C LOT IS THE NUMBER OF DATA VECTORS C ISIGN = +1 FOR TRANSFORM FROM SPECTRAL TO GRIDPOINT C = -1 FOR TRANSFORM FROM GRIDPOINT TO SPECTRAL C C ORDERING OF COEFFICIENTS: C A(0),B(0),A(1),B(1),A(2),B(2),...,A(N/2),B(N/2) C WHERE B(0)=B(N/2)=0; (N+2) LOCATIONS REQUIRED C C ORDERING OF DATA: C X(0),X(1),X(2),...,X(N-1) C C VECTORIZATION IS ACHIEVED ON CRAY BY DOING THE TRANSFORMS IN C PARALLEL C C *** N.B. N IS ASSUMED TO BE AN EVEN NUMBER C C DEFINITION OF TRANSFORMS: C ------------------------- C C ISIGN=+1: X(J)=SUM(K=0,...,N-1)(C(K)*EXP(2*I*J*K*PI/N)) C WHERE C(K)=A(K)+I*B(K) AND C(N-K)=A(K)-I*B(K) C C ISIGN=-1: A(K)=(1/N)*SUM(J=0,...,N-1)(X(J)*COS(2*J*K*PI/N)) C B(K)=-(1/N)*SUM(J=0,...,N-1)(X(J)*SIN(2*J*K*PI/N)) C C C NFAX=IFAX(1) NX=N+1 NH=N/2 INK=INC+INC IF (ISIGN.EQ.+1) GO TO 30 C C IF NECESSARY, TRANSFER DATA TO WORK AREA IGO=50 IF (MOD(NFAX,2).EQ.1) GOTO 40 IBASE=1 JBASE=1 DO 20 L=1,LOT I=IBASE J=JBASE CDIR$ IVDEP DO 10 M=1,N WORK(J)=A(I) I=I+INC J=J+1 10 CONTINUE IBASE=IBASE+JUMP JBASE=JBASE+NX 20 CONTINUE C IGO=60 GO TO 40 C C PREPROCESSING (ISIGN=+1) C ------------------------ C 30 CONTINUE CALL FFT99A(A,na,WORK,nw,TRIGS,ntrigs,INC,JUMP,N,LOT) IGO=60 C C COMPLEX TRANSFORM C ----------------- C 40 CONTINUE IA=1 LA=1 DO 80 K=1,NFAX IF (IGO.EQ.60) GO TO 60 50 CONTINUE CALL VPASSM(A(IA),A(IA+INC),WORK(1),WORK(2),TRIGS, * ntrigs,INK,2,JUMP,NX,LOT,NH,IFAX(K+1),LA) IGO=60 GO TO 70 60 CONTINUE CALL VPASSM(WORK(1),WORK(2),A(IA),A(IA+INC),TRIGS, * ntrigs,2,INK,NX,JUMP,LOT,NH,IFAX(K+1),LA) IGO=50 70 CONTINUE LA=LA*IFAX(K+1) 80 CONTINUE C IF (ISIGN.EQ.-1) GO TO 130 C C IF NECESSARY, TRANSFER DATA FROM WORK AREA IF (MOD(NFAX,2).EQ.1) GO TO 110 IBASE=1 JBASE=1 DO 100 L=1,LOT I=IBASE J=JBASE CDIR$ IVDEP DO 90 M=1,N A(J)=WORK(I) I=I+1 J=J+INC 90 CONTINUE IBASE=IBASE+NX JBASE=JBASE+JUMP 100 CONTINUE C C FILL IN ZEROS AT END 110 CONTINUE IB=N*INC+1 CDIR$ IVDEP DO 120 L=1,LOT A(IB)=0.0 A(IB+INC)=0.0 IB=IB+JUMP 120 CONTINUE GO TO 140 C C POSTPROCESSING (ISIGN=-1): C -------------------------- C 130 CONTINUE CALL FFT99B(WORK,nw,A,na,TRIGS,ntrigs,INC,JUMP,N,LOT) C 140 CONTINUE RETURN END ! SUBROUTINE SET99 (TRIGS, IFAX, N) SUBROUTINE SET999 (TRIGS, IFAX, ntrigs, N) integer :: ntrigs,n DIMENSION IFAX(13),TRIGS(ntrigs) ! ! Called from setfft (util.F) ! call set999(trigs,ifax,ntrigs,imax) ! (setfft is call from init) C C MODE 3 IS USED FOR REAL/HALF-COMPLEX TRANSFORMS. IT IS POSSIBLE C TO DO COMPLEX/COMPLEX TRANSFORMS WITH OTHER VALUES OF MODE, BUT C DOCUMENTATION OF THE DETAILS WERE NOT AVAILABLE WHEN THIS ROUTINE C WAS WRITTEN. C DATA MODE /3/ CALL FAX (IFAX, N, MODE) I = IFAX(1) IF (IFAX(I+1) .GT. 5 .OR. N .LE. 4) IFAX(1) = -99 IF (IFAX(1) .LE. 0 ) THEN WRITE(6,*) ' SET99 -- INVALID N' call shutdown('SET99') ENDIF CALL FFTRIG (TRIGS, N, ntrigs,MODE) RETURN END SUBROUTINE FAX(IFAX,N,MODE) DIMENSION IFAX(10) NN=N IF (IABS(MODE).EQ.1) GO TO 10 IF (IABS(MODE).EQ.8) GO TO 10 NN=N/2 IF ((NN+NN).EQ.N) GO TO 10 IFAX(1)=-99 RETURN 10 K=1 C TEST FOR FACTORS OF 4 20 IF (MOD(NN,4).NE.0) GO TO 30 K=K+1 IFAX(K)=4 NN=NN/4 IF (NN.EQ.1) GO TO 80 GO TO 20 C TEST FOR EXTRA FACTOR OF 2 30 IF (MOD(NN,2).NE.0) GO TO 40 K=K+1 IFAX(K)=2 NN=NN/2 IF (NN.EQ.1) GO TO 80 C TEST FOR FACTORS OF 3 40 IF (MOD(NN,3).NE.0) GO TO 50 K=K+1 IFAX(K)=3 NN=NN/3 IF (NN.EQ.1) GO TO 80 GO TO 40 C NOW FIND REMAINING FACTORS 50 L=5 INC=2 C INC ALTERNATELY TAKES ON VALUES 2 AND 4 60 IF (MOD(NN,L).NE.0) GO TO 70 K=K+1 IFAX(K)=L NN=NN/L IF (NN.EQ.1) GO TO 80 GO TO 60 70 L=L+INC INC=6-INC GO TO 60 80 IFAX(1)=K-1 C IFAX(1) CONTAINS NUMBER OF FACTORS NFAX=IFAX(1) C SORT FACTORS INTO ASCENDING ORDER IF (NFAX.EQ.1) GO TO 110 DO 100 II=2,NFAX ISTOP=NFAX+2-II DO 90 I=2,ISTOP IF (IFAX(I+1).GE.IFAX(I)) GO TO 90 ITEM=IFAX(I) IFAX(I)=IFAX(I+1) IFAX(I+1)=ITEM 90 CONTINUE 100 CONTINUE 110 CONTINUE RETURN END SUBROUTINE FFTRIG(TRIGS,N,ntrigs,MODE) integer :: n,ntrigs,mode DIMENSION TRIGS(ntrigs) PI=2.0*ASIN(1.0) IMODE=IABS(MODE) NN=N IF (IMODE.GT.1.AND.IMODE.LT.6) NN=N/2 DEL=(PI+PI)/FLOAT(NN) L=NN+NN DO 10 I=1,L,2 ANGLE=0.5*FLOAT(I-1)*DEL TRIGS(I)=COS(ANGLE) TRIGS(I+1)=SIN(ANGLE) 10 CONTINUE IF (IMODE.EQ.1) RETURN IF (IMODE.EQ.8) RETURN DEL=0.5*DEL NH=(NN+1)/2 L=NH+NH LA=NN+NN DO 20 I=1,L,2 ANGLE=0.5*FLOAT(I-1)*DEL TRIGS(LA+I)=COS(ANGLE) TRIGS(LA+I+1)=SIN(ANGLE) 20 CONTINUE IF (IMODE.LE.3) RETURN DEL=0.5*DEL LA=LA+NN IF (MODE.EQ.5) GO TO 40 DO 30 I=2,NN ANGLE=FLOAT(I-1)*DEL TRIGS(LA+I)=2.0*SIN(ANGLE) 30 CONTINUE RETURN 40 CONTINUE DEL=0.5*DEL DO 50 I=2,N ANGLE=FLOAT(I-1)*DEL TRIGS(LA+I)=SIN(ANGLE) 50 CONTINUE RETURN END SUBROUTINE VPASSM(A,B,C,D,TRIGS,ntrigs,INC1,INC2,INC3,INC4,LOT, | N,IFAC,LA) ! DIMENSION A(N),B(N),C(N),D(N),TRIGS(ntrigs) DIMENSION A(*),B(*),C(*),D(*),TRIGS(ntrigs) C C SUBROUTINE "VPASSM" - MULTIPLE VERSION OF "VPASSA" C PERFORMS ONE PASS THROUGH DATA C AS PART OF MULTIPLE COMPLEX FFT ROUTINE C A IS FIRST REAL INPUT VECTOR C B IS FIRST IMAGINARY INPUT VECTOR C C IS FIRST REAL OUTPUT VECTOR C D IS FIRST IMAGINARY OUTPUT VECTOR C TRIGS IS PRECALCULATED TABLE OF SINES " COSINES C INC1 IS ADDRESSING INCREMENT FOR A AND B C INC2 IS ADDRESSING INCREMENT FOR C AND D C INC3 IS ADDRESSING INCREMENT BETWEEN A"S & B"S C INC4 IS ADDRESSING INCREMENT BETWEEN C"S & D"S C LOT IS THE NUMBER OF VECTORS C N IS LENGTH OF VECTORS C IFAC IS CURRENT FACTOR OF N C LA IS PRODUCT OF PREVIOUS FACTORS C DATA SIN36/0.587785252292473/,COS36/0.809016994374947/, * SIN72/0.951056516295154/,COS72/0.309016994374947/, * SIN60/0.866025403784437/ C M=N/IFAC IINK=M*INC1 JINK=LA*INC2 JUMP=(IFAC-1)*JINK IBASE=0 JBASE=0 IGO=IFAC-1 IF (IGO.GT.4) RETURN GO TO (10,50,90,130),IGO C C CODING FOR FACTOR 2 C 10 IA=1 JA=1 IB=IA+IINK JB=JA+JINK DO 20 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 15 IJK=1,LOT C(JA+J)=A(IA+I)+A(IB+I) D(JA+J)=B(IA+I)+B(IB+I) C(JB+J)=A(IA+I)-A(IB+I) D(JB+J)=B(IA+I)-B(IB+I) I=I+INC3 J=J+INC4 15 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 20 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 40 K=LA1,M,LA KB=K+K-2 C1=TRIGS(KB+1) S1=TRIGS(KB+2) DO 30 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 25 IJK=1,LOT C(JA+J)=A(IA+I)+A(IB+I) D(JA+J)=B(IA+I)+B(IB+I) C(JB+J)=C1*(A(IA+I)-A(IB+I))-S1*(B(IA+I)-B(IB+I)) D(JB+J)=S1*(A(IA+I)-A(IB+I))+C1*(B(IA+I)-B(IB+I)) I=I+INC3 J=J+INC4 25 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 30 CONTINUE JBASE=JBASE+JUMP 40 CONTINUE RETURN C C CODING FOR FACTOR 3 C 50 IA=1 JA=1 IB=IA+IINK JB=JA+JINK IC=IB+IINK JC=JB+JINK DO 60 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 55 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IC+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IC+I)) C(JB+J)=(A(IA+I)-0.5*(A(IB+I)+A(IC+I)))-(SIN60*(B(IB+I)-B(IC+I))) C(JC+J)=(A(IA+I)-0.5*(A(IB+I)+A(IC+I)))+(SIN60*(B(IB+I)-B(IC+I))) D(JB+J)=(B(IA+I)-0.5*(B(IB+I)+B(IC+I)))+(SIN60*(A(IB+I)-A(IC+I))) D(JC+J)=(B(IA+I)-0.5*(B(IB+I)+B(IC+I)))-(SIN60*(A(IB+I)-A(IC+I))) I=I+INC3 J=J+INC4 55 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 60 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 80 K=LA1,M,LA KB=K+K-2 KC=KB+KB C1=TRIGS(KB+1) S1=TRIGS(KB+2) C2=TRIGS(KC+1) S2=TRIGS(KC+2) DO 70 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 65 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IC+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IC+I)) C(JB+J)= * C1*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))-(SIN60*(B(IB+I)-B(IC+I)))) * -S1*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))+(SIN60*(A(IB+I)-A(IC+I)))) D(JB+J)= * S1*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))-(SIN60*(B(IB+I)-B(IC+I)))) * +C1*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))+(SIN60*(A(IB+I)-A(IC+I)))) C(JC+J)= * C2*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))+(SIN60*(B(IB+I)-B(IC+I)))) * -S2*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))-(SIN60*(A(IB+I)-A(IC+I)))) D(JC+J)= * S2*((A(IA+I)-0.5*(A(IB+I)+A(IC+I)))+(SIN60*(B(IB+I)-B(IC+I)))) * +C2*((B(IA+I)-0.5*(B(IB+I)+B(IC+I)))-(SIN60*(A(IB+I)-A(IC+I)))) I=I+INC3 J=J+INC4 65 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 70 CONTINUE JBASE=JBASE+JUMP 80 CONTINUE RETURN C C CODING FOR FACTOR 4 C 90 IA=1 JA=1 IB=IA+IINK JB=JA+JINK IC=IB+IINK JC=JB+JINK ID=IC+IINK JD=JC+JINK DO 100 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 95 IJK=1,LOT C(JA+J)=(A(IA+I)+A(IC+I))+(A(IB+I)+A(ID+I)) C(JC+J)=(A(IA+I)+A(IC+I))-(A(IB+I)+A(ID+I)) D(JA+J)=(B(IA+I)+B(IC+I))+(B(IB+I)+B(ID+I)) D(JC+J)=(B(IA+I)+B(IC+I))-(B(IB+I)+B(ID+I)) C(JB+J)=(A(IA+I)-A(IC+I))-(B(IB+I)-B(ID+I)) C(JD+J)=(A(IA+I)-A(IC+I))+(B(IB+I)-B(ID+I)) D(JB+J)=(B(IA+I)-B(IC+I))+(A(IB+I)-A(ID+I)) D(JD+J)=(B(IA+I)-B(IC+I))-(A(IB+I)-A(ID+I)) I=I+INC3 J=J+INC4 95 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 100 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 120 K=LA1,M,LA KB=K+K-2 KC=KB+KB KD=KC+KB C1=TRIGS(KB+1) S1=TRIGS(KB+2) C2=TRIGS(KC+1) S2=TRIGS(KC+2) C3=TRIGS(KD+1) S3=TRIGS(KD+2) DO 110 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 105 IJK=1,LOT C(JA+J)=(A(IA+I)+A(IC+I))+(A(IB+I)+A(ID+I)) D(JA+J)=(B(IA+I)+B(IC+I))+(B(IB+I)+B(ID+I)) C(JC+J)= * C2*((A(IA+I)+A(IC+I))-(A(IB+I)+A(ID+I))) * -S2*((B(IA+I)+B(IC+I))-(B(IB+I)+B(ID+I))) D(JC+J)= * S2*((A(IA+I)+A(IC+I))-(A(IB+I)+A(ID+I))) * +C2*((B(IA+I)+B(IC+I))-(B(IB+I)+B(ID+I))) C(JB+J)= * C1*((A(IA+I)-A(IC+I))-(B(IB+I)-B(ID+I))) * -S1*((B(IA+I)-B(IC+I))+(A(IB+I)-A(ID+I))) D(JB+J)= * S1*((A(IA+I)-A(IC+I))-(B(IB+I)-B(ID+I))) * +C1*((B(IA+I)-B(IC+I))+(A(IB+I)-A(ID+I))) C(JD+J)= * C3*((A(IA+I)-A(IC+I))+(B(IB+I)-B(ID+I))) * -S3*((B(IA+I)-B(IC+I))-(A(IB+I)-A(ID+I))) D(JD+J)= * S3*((A(IA+I)-A(IC+I))+(B(IB+I)-B(ID+I))) * +C3*((B(IA+I)-B(IC+I))-(A(IB+I)-A(ID+I))) I=I+INC3 J=J+INC4 105 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 110 CONTINUE JBASE=JBASE+JUMP 120 CONTINUE RETURN C C CODING FOR FACTOR 5 C 130 IA=1 JA=1 IB=IA+IINK JB=JA+JINK IC=IB+IINK JC=JB+JINK ID=IC+IINK JD=JC+JINK IE=ID+IINK JE=JD+JINK DO 140 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 135 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IE+I))+(A(IC+I)+A(ID+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IE+I))+(B(IC+I)+B(ID+I)) C(JB+J)=(A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * -(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I))) C(JE+J)=(A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * +(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I))) D(JB+J)=(B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * +(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I))) D(JE+J)=(B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * -(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I))) C(JC+J)=(A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * -(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I))) C(JD+J)=(A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * +(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I))) D(JC+J)=(B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * +(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I))) D(JD+J)=(B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * -(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I))) I=I+INC3 J=J+INC4 135 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 140 CONTINUE IF (LA.EQ.M) RETURN LA1=LA+1 JBASE=JBASE+JUMP DO 160 K=LA1,M,LA KB=K+K-2 KC=KB+KB KD=KC+KB KE=KD+KB C1=TRIGS(KB+1) S1=TRIGS(KB+2) C2=TRIGS(KC+1) S2=TRIGS(KC+2) C3=TRIGS(KD+1) S3=TRIGS(KD+2) C4=TRIGS(KE+1) S4=TRIGS(KE+2) DO 150 L=1,LA I=IBASE J=JBASE CDIR$ IVDEP DO 145 IJK=1,LOT C(JA+J)=A(IA+I)+(A(IB+I)+A(IE+I))+(A(IC+I)+A(ID+I)) D(JA+J)=B(IA+I)+(B(IB+I)+B(IE+I))+(B(IC+I)+B(ID+I)) C(JB+J)= * C1*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * -(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * -S1*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * +(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) D(JB+J)= * S1*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * -(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * +C1*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * +(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) C(JE+J)= * C4*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * +(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * -S4*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * -(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) D(JE+J)= * S4*((A(IA+I)+COS72*(A(IB+I)+A(IE+I))-COS36*(A(IC+I)+A(ID+I))) * +(SIN72*(B(IB+I)-B(IE+I))+SIN36*(B(IC+I)-B(ID+I)))) * +C4*((B(IA+I)+COS72*(B(IB+I)+B(IE+I))-COS36*(B(IC+I)+B(ID+I))) * -(SIN72*(A(IB+I)-A(IE+I))+SIN36*(A(IC+I)-A(ID+I)))) C(JC+J)= * C2*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * -(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * -S2*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * +(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) D(JC+J)= * S2*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * -(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * +C2*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * +(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) C(JD+J)= * C3*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * +(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * -S3*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * -(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) D(JD+J)= * S3*((A(IA+I)-COS36*(A(IB+I)+A(IE+I))+COS72*(A(IC+I)+A(ID+I))) * +(SIN36*(B(IB+I)-B(IE+I))-SIN72*(B(IC+I)-B(ID+I)))) * +C3*((B(IA+I)-COS36*(B(IB+I)+B(IE+I))+COS72*(B(IC+I)+B(ID+I))) * -(SIN36*(A(IB+I)-A(IE+I))-SIN72*(A(IC+I)-A(ID+I)))) I=I+INC3 J=J+INC4 145 CONTINUE IBASE=IBASE+INC1 JBASE=JBASE+INC2 150 CONTINUE JBASE=JBASE+JUMP 160 CONTINUE RETURN END