!#include "dims.h" ! ! This software is part of the NCAR TIE-GCM. Use is governed by the ! Open Source Academic Research License Agreement contained in the file ! tiegcmlicense.txt. ! c file muh2cr.f ! am 01/04/16 runs only as direct solver or with modified stencils ! it's very slow ! 5/02 B. Foster: ! Use-associate coefficients from dynamo module in tiegcm1 (dynamo.F). c c ... required mudpack files c c mudcom.f c !---------------------------------------------------------------------------- ! BOP ! !IROUTINE: muh ! !INTERFACE: ! subroutine muh(pe,jntl) ! !USES: use pdynamo_module,only: nc,ncee,cee implicit none ! ! !DESCRIPTION: multigrid solver as direct solver ! runs only as direct solver and it's very slow ! input ! int jntl: error check first (0/1) ! output ! pe: electric potential ! required mudpack files ! ! !ARGUMENTS: integer jntl ! error check first ! !RETURN VALUE: ! ! !REVISION HISTORY: ! 21.02.05 ! ! EOP c c set grid size params c integer iixp,jjyq,iiex,jjey,nnx,nny,llwork,iiwork parameter (iixp = 80 , jjyq = 48,iiex = 1, jjey = 1 ) parameter (nnx=iixp*2**(iiex-1)+1, nny=jjyq*2**(jjey-1)+1) ! c c estimate work space for point relaxation (see muh2cr.d) c parameter (llwork=(5*((nnx+2)*(nny+2)+18*nnx*nny)/3+ | (nnx+2)*(nny+2)+ (iixp+1)*(jjyq+1)*(2*iixp+3))) parameter (iiwork=(iixp+1)*(jjyq+1)) real phi(nnx,nny),rhs(nnx,nny),work(llwork) integer iwork(iiwork) c c put integer and floating point argument names in contiguous c storage for labelling in vectors iprm,fprm c integer iprm(17),mgopt(4) real fprm(6) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nx,ny, + iguess,maxcy,method,nwork,lwrkqd,itero common/itmud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nx,ny, + iguess,maxcy,method,nwork,lwrkqd,itero real xa,xb,yc,yd,tolmax,relmax common/ftmud2cr/xa,xb,yc,yd,tolmax,relmax equivalence(intl,iprm) equivalence(xa,fprm) integer i,j,ierror real PE(NNX,1) integer maxcya c DATA MAXCYA/20/ DATA MAXCYA/1/ integer mm,nn,jj,jjj real pi c c set input integer arguments c MM = NNX NN = NNY PI = 4.*ATAN(1.) C C SET INPUT INTEGER PARAMETERS C INTL = JNTL c c set boundary condition flags c nxa = 0 nxb = 0 nyc = 2 nyd = 1 c c set grid sizes from parameter statements c ixp = iixp jyq = jjyq iex = iiex jey = jjey nx = nnx ny = nny c c set multigrid arguments (w(2,1) cycling with fully weighted c residual restriction and cubic prolongation) c mgopt(1) = 2 mgopt(2) = 2 mgopt(3) = 2 mgopt(4) = 3 c c set for one cycle c maxcy = maxcya c c set no initial guess forcing full multigrid cycling c iguess = 0 c c set work space length approximation from parameter statement c nwork = llwork c c set line z relaxation c method = 3 c c set end points of solution rectangle in (x,y) space c xa = -pi xb = pi yc = 0.0 yd = 0.5*pi c c set error control flag c tolmax = 0.01 c c set right hand side in rhs c initialize phi to zero c do i=1,nx do j=1,ny RHS(I,J) = CEE(I+(J-1)*NX+9*NX*NY) phi(i,j) = 0.0 end do end do c c set specified boundaries in phi c DO I=1,NX PHI(I,NY) = RHS(I,NY)/CEE(I+(NY-1)*NX+8*NX*NY) END DO c c set specified boundaries in phi c DO I=1,NX PHI(I,NY) = RHS(I,NY)/CEE(I+(NY-1)*NX+8*NX*NY) END DO ! write(*,100) 100 format(//' mud2cr test ') ! write (*,101) (iprm(i),i=1,15) 101 format(/,' integer input arguments ',/, | ' intl = ',i2,/,' nxa = ',i2,' nxb = ',i2,' nyc = ',i2, | ' nyd = ',i2,/,' ixp = ',i2,' jyq = ',i2,' iex = ',i2, | ' jey = ',i2,/,' nx = ',i3,' ny = ',i3,' iguess = ',i2, | ' maxcy = ',i3,/,' method = ',i2, ' work space estimate = ',i7) ! write (*,102) (mgopt(i),i=1,4) 102 format(/' multigrid option arguments ', | /,' kcycle = ',i2, | /,' iprer = ',i2, | /,' ipost = ',i2 | /,' intpol = ',i2) ! write(*,103) xa,xb,yc,yd,tolmax 103 format(/' floating point input parameters ', | /,' xa = ',f6.3,' xb = ',f6.3,' yc = ',f6.3,' yd = ',f6.3, | /,' tolerance (error control) = ',e10.3) ! write(6,"('fprm(1-5) (xa,xb,yc,yd,tolmax=',6f8.3)") fprm(1:5) c c intialization call c ! write(*,104) intl 104 format(/' discretization call to muh2cr', ' intl = ', i2) call muh2cr(iprm,fprm,work,iwork,rhs,phi,mgopt,ierror) ! write (*,200) ierror,iprm(16) 200 format(' ierror = ',i2, ' minimum work space = ',i7) if (ierror.gt.0) call exit(0) c c attempt solution c intl = 1 ! write(*,106) intl,method,iguess 106 format(/' approximation call to muh2cr', +/' intl = ',i2, ' method = ',i2,' iguess = ',i2) call muh2cr(iprm,fprm,work,iwork,rhs,phi,mgopt,ierror) ! write (*,107) ierror 107 format(' ierror = ',i2) if (ierror.gt.0) call exit(0) C C COPY PHI TO PE C DO J = 1,NY JJ = NY+J-1 JJJ = NY+1-J DO I = 1,NX PE(I,JJ) = PHI(I,J) PE(I,JJJ) = PHI(I,J) END DO END DO end !----------------------------------------------------------------------- subroutine muh2cr(iparm,fparm,wk,iwk,rhs,phi,mgopt, + ierror) implicit none integer iparm(17),mgopt(4),ierror,iwk(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps real fparm(6),xa,xb,yc,yd,tolmax,relmax integer kpbgn,kcbgn,ktxbgn,ktybgn,nxk,nyk,isx,jsy integer int,iw,k,kb,nx,ny,ic,itx,ity real wk(*),phi(*),rhs(*) common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax common/mud2crc/kpbgn(50),kcbgn(50),ktxbgn(50),ktybgn(50), +nxk(50),nyk(50),isx,jsy integer ibeta,ialfa,izmat,idmat common/mh2cr/ibeta,ialfa,izmat,idmat data int / 0 / save int ierror = 1 intl = iparm(1) ! set and check intl on all calls if (intl*(intl-1).ne.0) return if (int.eq.0) then int = 1 if (intl.ne.0) return ! very first call is not intl=0 end if ierror = 0 c c set arguments internally c these will not be rechecked if intl=1! c nxa = iparm(2) nxb = iparm(3) nyc = iparm(4) nyd = iparm(5) ixp = iparm(6) jyq = iparm(7) iex = iparm(8) jey = iparm(9) ngrid = max0(iex,jey) nfx = iparm(10) nfy = iparm(11) iguess = iparm(12) maxcy = iparm(13) method = iparm(14) nwork = iparm(15) kcycle = mgopt(1) if (kcycle .eq. 0) then c set defaults kcycle = 2 iprer = 2 ipost = 1 intpol = 3 else iprer = mgopt(2) ipost = mgopt(3) intpol = mgopt(4) end if xa = fparm(1) xb = fparm(2) yc = fparm(3) yd = fparm(4) tolmax = fparm(5) if (intl .eq. 0) then ! intialization call c c check input arguments c ierror = 2 ! check boundary condition flags if (max0(nxa,nxb,nyc,nyd).gt.2) return if (min0(nxa,nxb,nyc,nyd).lt.0) return if (nxa.eq.0.and.nxb.ne.0) return if (nxa.ne.0.and.nxb.eq.0) return if (nyc.eq.0.and.nyd.ne.0) return if (nyc.ne.0.and.nyd.eq.0) return ierror = 3 ! check grid sizes if (ixp.lt.2) return if (jyq.lt.2) return ierror = 4 ngrid = max0(iex,jey) if (iex.lt.1) return if (jey.lt.1) return if (ngrid.gt.50) return ierror = 5 if (nfx.ne.ixp*2**(iex-1)+1) return if (nfy.ne.jyq*2**(jey-1)+1) return ierror = 6 if (iguess*(iguess-1).ne.0) return ierror = 7 if (maxcy.lt.1) return ierror = 8 if (method.lt.0 .or. method.gt.3) return ierror = 9 c compute and test minimum work space isx = 0 if (method.eq.1 .or. method.eq.3) then if (nxa.ne.0) isx = 3 if (nxa.eq.0) isx = 5 end if jsy = 0 if (method.eq.2 .or. method.eq.3) then if (nyc.ne.0) jsy = 3 if (nyc.eq.0) jsy = 5 end if kps = 1 do k=1,ngrid c set subgrid sizes nxk(k) = ixp*2**(max0(k+iex-ngrid,1)-1)+1 nyk(k) = jyq*2**(max0(k+jey-ngrid,1)-1)+1 nx = nxk(k) ny = nyk(k) kps = kps+(nx+2)*(ny+2)+nx*ny*(10+isx+jsy) end do c c set pointers for direct at coarse grid c nx = ixp+1 ny = jyq+1 ibeta = kps+1 if (nyc .eq. 0) then ialfa = ibeta + nx*nx*(ny-1) izmat = ialfa+nx*nx*(ny-1) idmat = izmat+nx*nx*(ny-2) kps = idmat+nx*nx*(ny-2) else ialfa = ibeta + nx*nx*ny kps = ialfa+nx*nx*ny end if iparm(16) = kps+(nfx+2)*(nfy+2) ! exact minimum work space lwork = iparm(16) if (lwork .gt. nwork) return ierror = 10 ! check solution region if (xb.le.xa .or. yd.le.yc) return ierror = 11 if (tolmax .lt. 0.0) return ierror = 12 ! multigrid parameters if (kcycle.lt.0) return if (min0(iprer,ipost).lt.1) return if ((intpol-1)*(intpol-3).ne.0) return if (max0(kcycle,iprer,ipost).gt.2) then ierror = -5 ! inefficient multigrid cycling end if if (ierror .gt. 0) ierror = 0 ! no fatal errors c c set work space pointers and discretize pde at each grid level c iw = 1 do kb=1,ngrid k = ngrid-kb+1 nx = nxk(k) ny = nyk(k) kpbgn(k) = iw kcbgn(k) = kpbgn(k)+(nx+2)*(ny+2) ktxbgn(k) = kcbgn(k)+10*nx*ny ktybgn(k) = ktxbgn(k)+isx*nx*ny iw = ktybgn(k)+jsy*nx*ny ic = kcbgn(k) itx = ktxbgn(k) ity = ktybgn(k) klevel = k call dismh2cr(nx,ny,wk(ic),wk(itx),wk(ity), + wk,iwk,ierror) end do return end if ! end of intl=0 initialization call block nx = nfx ny = nfy call muh2cr1(nx,ny,rhs,phi,wk,iwk) iparm(17) = itero if (tolmax.gt.0.0) then ! check for convergence fparm(6) = relmax if (relmax.gt.tolmax) ierror = -1 ! flag convergenc failure end if return end subroutine muh2cr1(nx,ny,rhsf,phif,wk,iwk) implicit none integer nx,ny,iwk(*) real phif(nx,ny),rhsf(nx,ny),wk(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps real xa,xb,yc,yd,tolmax,relmax,phmax integer kpbgn,kcbgn,ktxbgn,ktybgn,nxk,nyk,isx,jsy integer k,kb,ip,ic,ir,ipc,irc,icc integer ncx,ncy,jj,ij,i,j,iter common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax common/mud2crc/kpbgn(50),kcbgn(50),ktxbgn(50),ktybgn(50), +nxk(50),nyk(50),isx,jsy integer ibeta,ialfa,izmat,idmat common/mh2cr/ibeta,ialfa,izmat,idmat nx = nxk(ngrid) ny = nyk(ngrid) ip = kpbgn(ngrid) ic = kcbgn(ngrid) ir = ic+9*nx*ny c c set phif,rhsf in wk and adjust right hand side c call swk2(nx,ny,phif,rhsf,wk(ip),wk(ir)) if (iguess.eq.0) then c c no initial guess at finest grid level! c do kb=2,ngrid k = ngrid-kb+1 nx = nxk(k+1) ny = nyk(k+1) ip = kpbgn(k+1) ir = kcbgn(k+1)+9*nx*ny ncx = nxk(k) ncy = nyk(k) ipc = kpbgn(k) icc = kcbgn(k) irc = icc+9*ncx*ncy c c transfer down to all grid levels c call trsfc2(nx,ny,wk(ip),wk(ir),ncx,ncy, + wk(ipc),wk(irc)) end do c c adjust right hand side at all grid levels in case c rhs or specified b.c. in phi or gbdy changed c do k=1,ngrid nx = nxk(k) ny = nyk(k) ip = kpbgn(k) ic = kcbgn(k) call adjmh2cr(nx,ny,wk(ip),wk(ic)) end do c c execute one full multigrid cycle c do k=1,ngrid-1 kcur = k call kcymh2cr(wk,iwk) nx = nxk(k+1) ny = nyk(k+1) ip = kpbgn(k+1) ipc = kpbgn(k) ncx = nxk(k) ncy = nyk(k) c c lift or prolong approximation from k to k+1 c call prolon2(ncx,ncy,wk(ipc),nx,ny,wk(ip),nxa,nxb, + nyc,nyd,intpol) end do else c c adjust rhs at finest grid level only c nx = nxk(ngrid) ny = nyk(ngrid) ip = kpbgn(ngrid) ic = kcbgn(ngrid) call adjmh2cr(nx,ny,wk(ip),wk(ic)) end if c c execute maxcy more multigrid k cycles from finest level c kcur = ngrid do iter=1,maxcy itero = iter call kcymh2cr(wk,iwk) if (tolmax.gt.0.0) then c c error control c relmax = 0.0 phmax = 0.0 do j=1,nfy jj = j*(nfx+2) do i=1,nfx ij = jj+i+1 phmax = max(phmax,abs(wk(ij))) relmax = max(relmax,abs(wk(ij)-phif(i,j))) phif(i,j) = wk(ij) end do end do c c set maximum relative difference and check for convergence c if (phmax.gt.0.0) relmax = relmax/phmax if (relmax.le.tolmax) return end if end do c c set final interate after maxcy cycles in phif c do j=1,nfy jj = j*(nfx+2) do i=1,nfx ij = jj+i+1 phif(i,j) = wk(ij) end do end do return end subroutine kcymh2cr(wk,iwk) c c execute multigrid k cycle from kcur grid level c kcycle=1 for v cycles, kcycle=2 for w cycles c implicit none integer iwk(*) real wk(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps integer nx,ny,ip,ic,ipc,irc,itx,ity,ncx,ncy,l,nrel real xa,xb,yc,yd,tolmax,relmax integer kpbgn,kcbgn,ktxbgn,ktybgn,nxk,nyk,isx,jsy common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax common/mud2crc/kpbgn(50),kcbgn(50),ktxbgn(50),ktybgn(50), +nxk(50),nyk(50),isx,jsy integer ibeta,ialfa,izmat,idmat common/mh2cr/ibeta,ialfa,izmat,idmat integer kount(50) klevel = kcur nx = nxk(klevel) ny = nyk(klevel) ip = kpbgn(klevel) ic = kcbgn(klevel) itx = ktxbgn(klevel) ity = ktybgn(klevel) if (kcur .eq. 1) then c c solve at coarse level with direct method and return c if (nyc .ne. 0) then call dir2cr(nx,ny,wk(ip),wk(ic),wk(ibeta),wk(ialfa),iwk,nxa) return else call dir2crp(nx,ny,wk(ip),wk(ic),wk(ibeta),wk(ialfa), + wk(izmat),wk(idmat),iwk,nxa) return end if end if c c prerelax at current finest grid level > 1 c do l=1,iprer call relmh2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do c c restrict residual to kcur-1 level c ipc = kpbgn(klevel-1) ncx = nxk(klevel-1) ncy = nyk(klevel-1) irc = kcbgn(klevel-1)+9*ncx*ncy call resmh2cr(nx,ny,wk(ip),ncx,ncy,wk(ipc),wk(irc),wk(ic), | wk(kps)) c c set counter for grid levels to zero c do l = 1,kcur kount(l) = 0 end do c c set new grid level and continue k-cycling c klevel = kcur-1 nrel = iprer c c kcycle control point c 10 continue c c post relax when kcur revisited c if (klevel .eq. kcur) go to 5 c c count hit at current level c kount(klevel) = kount(klevel)+1 c c relax or solve directly at current level c nx = nxk(klevel) ny = nyk(klevel) ip = kpbgn(klevel) ic = kcbgn(klevel) itx = ktxbgn(klevel) ity = ktybgn(klevel) if (klevel.gt.1) then do l=1,nrel call relmh2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do else c c use direct method at coarsest level c if (nyc .ne. 0) then call dir2cr(nx,ny,wk(ip),wk(ic),wk(ibeta),wk(ialfa),iwk,nxa) else call dir2crp(nx,ny,wk(ip),wk(ic),wk(ibeta),wk(ialfa), + wk(izmat),wk(idmat),iwk,nxa) end if c c insure direct method is not called again at coarse level c kount(1) = kcycle+1 end if if (kount(klevel) .eq. kcycle+1) then c c kcycle complete at klevel c ipc = ip ip = kpbgn(klevel+1) ncx = nxk(klevel) ncy = nyk(klevel) nx = nxk(klevel+1) ny = nyk(klevel+1) c c inject correction to finer grid c call cor2(nx,ny,wk(ip),ncx,ncy,wk(ipc),nxa,nxb,nyc,nyd, + intpol,wk(kps)) c c reset counter to zero c kount(klevel) = 0 c c ascend to next higher level and set to postrelax there c klevel = klevel+1 nrel = ipost go to 10 else if (klevel .gt. 1) then c c kcycle not complete so descend unless at coarsest grid c ipc = kpbgn(klevel-1) ncx = nxk(klevel-1) ncy = nyk(klevel-1) irc = kcbgn(klevel-1)+9*ncx*ncy call resmh2cr(nx,ny,wk(ip),ncx,ncy,wk(ipc),wk(irc),wk(ic), + wk(kps)) c c prerelax at next coarser level c klevel = klevel-1 nrel = iprer go to 10 else c c direct at coarsest level takes place of postrelax c ip = kpbgn(1) ic = kcbgn(1) nx = nxk(1) ny = nyk(1) if (nyc .ne. 0) then call dir2cr(nx,ny,wk(ip),wk(ic),wk(ibeta),wk(ialfa), | iwk,nxa) else call dir2crp(nx,ny,wk(ip),wk(ic),wk(ibeta),wk(ialfa), + wk(izmat),wk(idmat),iwk,nxa) end if ipc = ip ip = kpbgn(2) ncx = nxk(1) ncy = nyk(1) nx = nxk(2) ny = nyk(2) c c inject correction to level 2 c call cor2(nx,ny,wk(ip),ncx,ncy,wk(ipc),nxa,nxb,nyc,nyd, + intpol,wk(kps)) c c set to postrelax at level 2 c nrel = ipost klevel = 2 go to 10 end if end if 5 continue c c post relax at current finest grid level c nx = nxk(kcur) ny = nyk(kcur) ip = kpbgn(kcur) ic = kcbgn(kcur) itx = ktxbgn(kcur) ity = ktybgn(kcur) do l=1,ipost call relmh2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do return end subroutine dismh2cr(nx,ny,cf,tx,ty,wk,iwk,ier) use pdynamo_module,only: nc,ncee,cee,ceee c c discretize elliptic pde for muh2cr, set nonfatal errors c implicit none integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps real xa,xb,yc,yd,tolmax,relmax integer nx,ny,iwk(*),i,j,kbdy,l,im1,jm1,ier,jc real cf(nx,ny,10),tx(nx,ny,*),ty(ny,nx,*) real wk(*) common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax integer ibeta,ialfa,izmat,idmat common/mh2cr/ibeta,ialfa,izmat,idmat integer nnx,nny c c CHECK FOR CONSISTENCYT WRT KLEVEL c NNX = ixp*2**(KLEVEL-1)+1 NNY = jyq*2**(KLEVEL-1)+1 IF(NNX.NE.NX.OR.NNY.NE.NY)THEN WRITE(6,100)NX,NY,NNX,NNY,ixp,jyq,KLEVEL 100 FORMAT(' INCONSISTENCY WRT LEVEL. NX,NY,NNX,NNY,ixp,jyq,', | 'klevel = ',8I6) c call shutdown('dismh2cr') ENDIF CALL CEEE(CEE(NC(6-KLEVEL-4)),NX,NY,CF) ! sub ceee is in mud.F c c set coefficient for specified boundaries c if (nxa.eq.1) then i = 1 do j=1,ny do l=1,9 cf(i,j,l) = 0.0 end do cf(i,j,9) = 1.0 end do end if if (nxb.eq.1) then i = nx do j=1,ny do l=1,9 cf(i,j,l) = 0.0 end do cf(i,j,9) = 1.0 end do end if if (nyc.eq.1) then j = 1 do i=1,nx do l=1,9 cf(i,j,l) = 0.0 end do cf(i,j,9) = 1.0 end do end if if (nyd.eq.1) then j = ny do i=1,nx do l=1,9 cf(i,j,l) = 0.0 end do cf(i,j,9) = 1.0 end do end if if (klevel .eq. 1) then c c set block tri-diagonal coefficient matrix and do lu decomposition c for direct method at coarsest grid level c nx = ixp+1 ny = jyq+1 if (nyc .ne. 0) then c factor non-periodic block matrix call lud2cr(nx,ny,cf,wk(ibeta),wk(ialfa),iwk,nxa) return else c factor periodic block matrix do j =1,ny-1 call setbcr(nx,ny,cf,wk(ibeta),j,nxa) call setacr(nx,ny,cf,wk(ialfa),j,nxa) end do call lud2crp(nx,ny,cf,wk(ibeta),wk(ialfa),wk(izmat), + wk(idmat),iwk,nxa) return end if end if c c set and factor tridiagonal matrices for line relaxation(s) if flagged c if (method.eq.1.or.method.eq.3) then if (nxa.ne.0) then c c nonperiodic x line relaxation c do i=1,nx im1 = max0(i-1,1) do j=1,ny tx(im1,j,1) = cf(i,j,5) tx(i,j,2) = cf(i,j,9) tx(i,j,3) = cf(i,j,1) end do end do call factri(ny,nx,tx(1,1,1),tx(1,1,2),tx(1,1,3)) else c c periodic x line relaxation c if (nx .gt. 3) then c c set and factor iff nx > 3 c do i=1,nx-1 do j=1,ny tx(i,j,1) = cf(i,j,5) tx(i,j,2) = cf(i,j,9) tx(i,j,3) = cf(i,j,1) end do end do call factrp(ny,nx,tx,tx(1,1,2),tx(1,1,3),tx(1,1,4), + tx(1,1,5),wk(kps)) end if end if end if if (method.eq.2.or.method.eq.3) then if (nyc.ne.0) then c c nonperiodic y line relaxation c do j=1,ny jm1 = max0(j-1,1) do i=1,nx ty(jm1,i,1) = cf(i,j,7) ty(j,i,2) = cf(i,j,9) ty(j,i,3) = cf(i,j,3) end do end do call factri(nx,ny,ty(1,1,1),ty(1,1,2),ty(1,1,3)) else c c periodic y line relaxation c if (ny .gt. 3) then c c set and factor iff ny > 3 c do j=1,ny-1 do i=1,nx ty(j,i,1) = cf(i,j,7) ty(j,i,2) = cf(i,j,9) ty(j,i,3) = cf(i,j,3) end do end do call factrp(nx,ny,ty,ty(1,1,2),ty(1,1,3),ty(1,1,4), + ty(1,1,5),wk(kps)) end if end if end if return end subroutine lud2cr(nx,ny,cof,beta,alfa,index,nxa) c c decompose nonperiodic block coefficient matrix c implicit none integer nx,ny,nxa,index(nx,ny) real cof(nx,ny,10),beta(nx,nx,*),alfa(nx,nx,*) integer iz,i1,jcur,jm1,l,lm1,lp1,k,i real gama,sum iz = 0 i1 = 1 c c set and factor umat(1) in beta(1) c jcur = 1 call setbcr(nx,ny,cof,beta,jcur,nxa) call sgfa(beta,nx,nx,index,iz) do jcur=2,ny c c solve transpose of lmat(jcur)*beta(jcur-1) = alfa(jcur) in alfa(jcur) c call setacr(nx,ny,cof,alfa,jcur,nxa) call transp(nx,alfa(1,1,jcur)) jm1 = jcur-1 do l=1,nx call sgsl(beta(1,1,jm1),nx,nx,index(1,jm1),alfa(1,l,jcur),i1) end do call transp(nx,alfa(1,1,jcur)) call setbcr(nx,ny,cof,beta,jcur,nxa) do i=1,nx do l=1,nx sum = 0.0 lm1=max0(1,l-1) lp1=min0(l+1,nx) do k=lm1,lp1 if (k .eq. l+1) then gama = cof(k,jcur-1,4) else if (k.eq. l) then gama = cof(k,jcur-1,3) else if (k .eq. l-1) then gama = cof(k,jcur-1,2) else gama=0.0 end if sum = sum+alfa(i,k,jcur)*gama end do if (nxa.eq.0) then if (l .eq. 2) then sum=sum+alfa(i,nx,jcur)*cof(nx,jcur-1,2) end if if (l .eq. nx-1) then sum=sum+alfa(i,1,jcur)*cof(1,jcur-1,4) end if end if beta(i,l,jcur) = beta(i,l,jcur)-sum end do end do c c factor current beta for next pass c iz = 0 call sgfa(beta(1,1,jcur),nx,nx,index(1,jcur),iz) end do return end subroutine dir2cr(nx,ny,phi,cof,beta,alfa,index,nxa) c c direct solve at coarsest grid c implicit none integer nx,ny,index(nx,ny),nxa real phi(0:nx+1,0:ny+1),cof(nx,ny,10) real beta(nx,nx,*),alfa(nx,nx,*) c forward sweep call for2cr(nx,ny,phi,cof(1,1,10),alfa) c backward sweep call bkw2cr(nx,ny,phi,cof,beta,index,nxa) return end subroutine for2cr(nx,ny,phi,frhs,alfa) c c forward sweep c implicit none integer nx,ny,i,j,l real phi(0:nx+1,0:ny+1),frhs(nx,ny),alfa(nx,nx,*),sum do j=1,ny do i=1,nx phi(i,j)=frhs(i,j) end do end do do j=2,ny do i=1,nx sum=0.0 do l=1,nx sum=sum+alfa(i,l,j)*phi(l,j-1) end do phi(i,j)=phi(i,j)-sum end do end do return end subroutine bkw2cr(nx,ny,phi,cof,beta,index,nxa) implicit none integer nx,ny,index(nx,ny),nxa real beta(nx,nx,*),sum real phi(0:nx+1,0:ny+1),cof(nx,ny,10) integer iz,jcur,jb,j,i iz = 0 jcur=ny call sgsl(beta(1,1,jcur),nx ,nx ,index(1,jcur),phi(1,jcur),iz) do jb=2,ny j=ny-jb+1 jcur=j do i=2,nx-1 sum=cof(i,j,2)*phi(i+1,j+1)+cof(i,j,3)*phi(i,j+1)+cof(i,j,4)* + phi(i-1,j+1) phi(i,j)=phi(i,j)-sum end do phi(1,j)=phi(1,j)-(cof(1,j,2)*phi(2,j+1)+cof(1,j,3)*phi(1,j+1)) phi(nx,j)=phi(nx,j)-(cof(nx,j,3)*phi(nx,j+1)+cof(nx,j,4)* + phi(nx-1,j+1)) if (nxa .eq.0) then phi(1,j)=phi(1,j)-cof(1,j,4)*phi(nx-1,j+1) phi(nx,j)=phi(nx,j)-cof(nx,j,2)*phi(2,j+1) end if call sgsl(beta(1,1,jcur),nx ,nx ,index(1,jcur),phi(1,jcur),iz) end do return end subroutine lud2crp(nx,ny,cof,beta,alfa,zmat,dmat,index,nxa) c c decompose periodic block tridiagonal matrix for direct at coarsest grid c implicit none integer nx,ny,index(nx,ny),nxa real cof(nx,ny,10),alfa(nx,nx,*),beta(nx,nx,*) real dmat(nx,nx,*),zmat(nx,nx,*),sum,gama integer iz,j,jcur,i,l,jm1,i1,lm1,lp1,k jcur = 1 c c set dmat(1)=alfa(1) c call setacr(nx,ny,cof,alfa,jcur,nxa) do i=1,nx do l=1,nx dmat(i,l,1) = alfa(i,l,1) end do end do iz = 0 c c factor umat(1) in beta(1) c call setbcr(nx,ny,cof,beta,jcur,nxa) call sgfa(beta(1,1,1),nx,nx,index(1,1),iz) do jcur=2,ny-2 c c solve transpose of lmat(jcur)umat(jcur-1)=alfa(jcur) in alfa(jcur) c call setacr(nx,ny,cof,alfa,jcur,nxa) call transp(nx,alfa(1,1,jcur)) jm1 = jcur-1 i1 = 1 do l=1,nx call sgsl(beta(1,1,jm1),nx,nx,index(1,jm1),alfa(1,l,jcur),i1) end do call transp(nx,alfa(1,1,jcur)) call setbcr(nx,ny,cof,beta,jcur,nxa) do i=1,nx do l=1,nx sum = 0.0 lm1=max0(1,l-1) lp1=min0(l+1,nx) do k=lm1,lp1 if (k .eq. l+1) then gama = cof(k,jcur-1,4) else if (k.eq. l) then gama = cof(k,jcur-1,3) else if (k .eq. l-1) then gama = cof(k,jcur-1,2) else gama=0.0 end if sum = sum+alfa(i,k,jcur)*gama end do if (nxa.eq.0) then if (l .eq. 2) then sum=sum+alfa(i,nx,jcur)*cof(nx,jcur-1,2) end if if (l .eq. nx-1) then sum=sum+alfa(i,1,jcur)*cof(1,jcur-1,4) end if end if beta(i,l,jcur)=beta(i,l,jcur)-sum end do end do c c factor current beta(1,1,jcur) for next pass c call sgfa(beta(1,1,jcur),nx ,nx,index(1,jcur),iz) c c set dmat(jcur) = -alfa(jcur)*dmat(jcur-1) c do i=1,nx do j=1,nx dmat(i,j,jcur) = 0.0 do l=1,nx dmat(i,j,jcur) = dmat(i,j,jcur)-alfa(i,l,jcur)* + dmat(l,j,jcur-1) end do end do end do if (jcur .eq. ny-2) then c c adjust dmat(ny-2) = gama(ny-2)-alfa(ny-2)*dmat(ny-3) c dmat(1,1,jcur) = cof(1,jcur,3) + dmat(1,1,jcur) dmat(1,2,jcur) = cof(1,jcur,2) + dmat(1,2,jcur) c c adjust for periodic b.c. in x c if (nxa .eq. 0) then dmat(1,nx-1,jcur) = cof(1,jcur,4) + dmat(1,nx-1,jcur) dmat(nx,2,jcur) = cof(nx,jcur,2) + dmat(nx,2,jcur) end if c c matrix interior c do i=2,nx-1 dmat(i,i,jcur) = cof(i,jcur,3) + dmat(i,i,jcur) dmat(i,i-1,jcur) = cof(i,jcur,4) + dmat(i,i-1,jcur) dmat(i,i+1,jcur) = cof(i,jcur,2) + dmat(i,i+1,jcur) end do dmat(nx,nx,jcur) = cof(nx,jcur,3) + dmat(nx,nx,jcur) dmat(nx,nx-1,jcur) = cof(nx,jcur,4) + dmat(nx,nx-1,jcur) end if end do c c final phase with periodic factorization c c solve transpose of zmat(1) beta(1) = gama(ny-1) c zmat(1,1,1) = cof(1,ny-1,3) zmat(1,2,1) = cof(1,ny-1,2) do l=3,nx zmat(1,l,1) = 0.0 end do do i=2,nx-1 do l=1,nx zmat(i,l,1) = 0.0 end do zmat(i,i,1) = cof(i,ny-1,3) zmat(i,i+1,1) = cof(i,ny-1,2) zmat(i,i-1,1) = cof(i,ny-1,4) end do zmat(nx,nx-1,1) = cof(nx,ny-1,4) zmat(nx,nx,1) = cof(nx,ny-1,3) do l=1,nx-2 zmat(nx,l,1) = 0.0 end do c c adjust for periodic x b.c. c if (nxa .eq.0) then zmat(1,nx-1,1) = cof(1,ny-1,4) zmat(nx,2,1) = cof(nx,ny-1,2) end if call transp(nx,zmat(1,1,1)) do l=1,nx call sgsl(beta(1,1,1),nx,nx,index(1,1),zmat(1,l,1),i1) end do call transp(nx,zmat(1,1,1)) do jcur = 2,ny-3 c c solve transpose of zmat(jcur) umat(jcur) = -zmat(jcur-1) gama(jcur-1) c do i=1,nx zmat(i,1,jcur) = -(zmat(i,1,jcur-1)*cof(1,jcur-1,3) + + zmat(i,2,jcur-1)*cof(2,jcur-1,4)) end do do i=1,nx do l=2,nx-1 zmat(i,l,jcur) = -(zmat(i,l-1,jcur-1)*cof(l-1,jcur-1,2) + + zmat(i,l,jcur-1)*cof(l,jcur-1,3) + + zmat(i,l+1,jcur-1)*cof(l+1,jcur-1,4)) end do end do do i=1,nx zmat(i,nx,jcur) = -(zmat(i,nx-1,jcur-1)*cof(nx-1,jcur-1,2) + + zmat(i,nx,jcur-1)*cof(nx,jcur-1,3)) end do c c adjust j=2 and j=nx-1 column if periodic in x c if (nxa .eq. 0) then do i=1,nx zmat(i,2,jcur)=zmat(i,2,jcur)-zmat(i,nx,jcur-1)* + cof(nx,jcur-1,2) zmat(i,nx-1,jcur)=zmat(i,nx-1,jcur)-zmat(i,1,jcur-1)* + cof(1,jcur-1,4) end do end if call transp(nx,zmat(1,1,jcur)) do l=1,nx call sgsl(beta(1,1,jcur),nx,nx,index(1,jcur),zmat(1,l,jcur), | i1) end do call transp(nx,zmat(1,1,jcur)) end do c c solve transpose of zmat(ny-2)umat(ny-2)=alfa(ny-1)-zmat(ny-3)gama(ny-3) c jcur = ny-2 do i=1,nx zmat(i,1,jcur) = -(zmat(i,1,jcur-1)*cof(1,jcur-1,3) + + zmat(i,2,jcur-1)*cof(2,jcur-1,4)) end do do i=1,nx do l=2,nx-1 zmat(i,l,jcur) = -(zmat(i,l-1,jcur-1)*cof(l-1,jcur-1,2) + + zmat(i,l,jcur-1)*cof(l,jcur-1,3) + + zmat(i,l+1,jcur-1)*cof(l+1,jcur-1,4)) end do end do do i=1,nx zmat(i,nx,jcur) = -(zmat(i,nx-1,jcur-1)*cof(nx-1,jcur-1,2) + + zmat(i,nx,jcur-1)*cof(nx,jcur-1,3)) end do c c adjust j=2 and j=nx-1 column if periodic in x c if (nxa .eq. 0) then do i=1,nx zmat(i,2,jcur)=zmat(i,2,jcur)-zmat(i,nx,jcur-1)* | cof(nx,jcur-1,2) zmat(i,nx-1,jcur)=zmat(i,nx-1,jcur)-zmat(i,1,jcur-1)* + cof(1,jcur-1,4) end do end if call setacr(nx,ny,cof,alfa,ny-1,nxa) do i=1,nx do l=1,nx zmat(i,l,ny-2) = alfa(i,l,ny-1) + zmat(i,l,ny-2) end do end do call transp(nx,zmat(1,1,ny-2)) do l=1,nx call sgsl(beta(1,1,ny-2),nx,nx,index(1,ny-2),zmat(1,l,ny-2),i1) end do call transp(nx,zmat(1,1,ny-2)) c c set umat(ny-1) = beta(ny-1)-(zmat(1)*dmat(1)+...+zmat(ny-2)*dmat(ny-2)) c in beta(ny-1) c call setbcr(nx,ny,cof,beta,ny-1,nxa) do i=1,nx do j=1,nx sum = 0.0 do jcur=1,ny-2 do l=1,nx sum = sum + zmat(i,l,jcur)*dmat(l,j,jcur) end do end do beta(i,j,ny-1) = beta(i,j,ny-1) - sum end do end do c c factor bmat(ny-1) for backward sweep c call sgfa(beta(1,1,ny-1),nx,nx,index(1,ny-1),iz) c c lud is now complete c return end subroutine dir2crp(nx,ny,phi,cof,beta,alfa,zmat,dmat,index,nxa) implicit none integer nx,ny,index(nx,ny),nxa real phi(0:nx+1,0:ny+1),cof(nx,ny,10) real beta(nx,nx,*),alfa(nx,nx,*) real zmat(nx,nx,*), dmat(nx,nx,*) c forward sweep call for2crp(nx,ny,phi,cof(1,1,10),alfa,zmat) c backward sweep call bkw2crp(nx,ny,phi,cof,beta,dmat,index,nxa) return end subroutine for2crp(nx,ny,phi,frhs,alfa,zmat) implicit none integer nx,ny,i,j,l,jcur,k real frhs(nx,ny) real phi(0:nx+1,0:ny+1) real alfa(nx,nx,*),zmat(nx,nx,*) real sum do j=1,ny-1 do i=1,nx phi(i,j)=frhs(i,j) end do end do do jcur=2,ny-2 do i=1,nx sum=0.0 do l=1,nx sum=sum+alfa(i,l,jcur)*phi(l,jcur-1) end do phi(i,jcur)=phi(i,jcur)-sum end do end do c c solve: c zmat(1)*phi(1)+...+zmat(ny-2)*phi(ny-2) + phi(ny-1) = f(ny-1) c do i=1,nx sum = 0.0 do k=1,ny-2 do l=1,nx sum = sum + zmat(i,l,k)*phi(l,k) end do end do phi(i,ny-1) = phi(i,ny-1) - sum end do return end subroutine bkw2crp(nx,ny,phi,cof,beta,dmat,index,nxa) implicit none integer nx,ny,index(nx,ny),nxa real phi(0:nx+1,0:ny+1),cof(nx,ny,10) real beta(nx,nx,ny),dmat(nx,nx,*) integer iz,i,l,kb,k real sum iz = 0 call sgsl(beta(1,1,ny-1),nx,nx,index(1,ny-1),phi(1,ny-1),iz) c c solve beta(ny-2)*phi(ny-2) = phi(ny-2)-dmat(ny-2)*phi(ny-1) c do i=1,nx sum = 0.0 do l=1,nx sum = sum + dmat(i,l,ny-2)*phi(l,ny-1) end do phi(i,ny-2) = phi(i,ny-2) - sum end do call sgsl(beta(1,1,ny-2),nx,nx,index(1,ny-2),phi(1,ny-2),iz) c c solve beta(k)*phi(k) = phi(k) - gama(k)*phi(k+1)-dmat(k)*phi(ny-1) c k=ny-3,...,1 c do kb=4,ny k = ny-kb+1 sum = 0.0 do l=1,nx sum = sum+dmat(1,l,k)*phi(l,ny-1) end do phi(1,k) = phi(1,k)-sum - ( cof(1,k,3)*phi(1,k+1) + + cof(1,k,2)*phi(2,k+1)) do i=2,nx-1 sum = 0.0 do l=1,nx sum = sum+dmat(i,l,k)*phi(l,ny-1) end do phi(i,k) = phi(i,k) - sum - (cof(i,k,4)*phi(i-1,k+1) + + cof(i,k,3)*phi(i,k+1) + + cof(i,k,2)*phi(i+1,k+1)) end do sum = 0.0 do l=1,nx sum = sum+dmat(nx,l,k)*phi(l,ny-1) end do phi(nx,k) = phi(nx,k) - sum - (cof(nx,k,4)*phi(nx-1,k+1) + + cof(nx,k,3)*phi(nx,k+1)) c c adjust for periodic x b.c. c if (nxa .eq. 0) then phi(1,k) = phi(1,k) - cof(1,k,4)*phi(nx-1,k+1) phi(nx,k) = phi(nx,k) - cof(nx,k,2)*phi(2,k+1) end if call sgsl(beta(1,1,k),nx,nx,index(1,k),phi(1,k),iz) end do c c set j=ny by periodicity c do i=1,nx phi(i,ny) = phi(i,1) end do return end subroutine setbcr(nx,ny,cof,beta,jcur,nxa) c c set diagonal matrix on block c implicit none integer nx,ny,jcur,nxa,i,l real cof(nx,ny,10),beta(nx,nx,*) do i=1,nx do l=1,nx beta(i,l,jcur)=0.0 end do end do do i=1,nx beta(i,i,jcur) = cof(i,jcur,9) end do do i=2,nx beta(i,i-1,jcur) = cof(i,jcur,5) end do do i=1,nx-1 beta(i,i+1,jcur) = cof(i,jcur,1) end do if (nxa.eq.0) then beta(1,nx-1,jcur) = cof(1,jcur,5) beta(nx,2,jcur) = cof(nx,jcur,1) end if return end subroutine setacr(nx,ny,cof,alfa,jcur,nxa) implicit none integer nx,ny,jcur,nxa,i,j real cof(nx,ny,10),alfa(nx,nx,*) do i=1,nx do j=1,nx alfa(i,j,jcur)=0.0 end do end do do i=2,nx alfa(i,i-1,jcur)=cof(i,jcur,6) end do do i=1,nx alfa(i,i,jcur)=cof(i,jcur,7) end do do i=1,nx-1 alfa(i,i+1,jcur)=cof(i,jcur,8) end do if (nxa .eq. 0) then c adjust for x periodicity alfa(1,nx-1,jcur)=cof(1,jcur,6) alfa(nx,2,jcur)=cof(nx,jcur,8) end if return end subroutine adjmh2cr(nx,ny,phi,cf) c c adjust righthand side in cf(i,j,10) for boundary conditions c implicit none integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps real xa,xb,yc,yd,tolmax,relmax integer nx,ny,i,j,kbdy real cf(nx,ny,10),phi(0:nx+1,0:ny+1) real dlx,dlx2,dlxx,dly,dly2,dlyy,dlxy,dlxy2,dlxy4,dxoy,dyox real x,y,cxx,cxy,cyy,cx,cy,ce,c1,c2,c3,c4,c5 real c6,c7,c8 real alfaa,alfab,alfac,alfad,betaa,betab,betac,betad,det real gamaa,gamab,gamac,gamad real alfim1,alfi,alfip1,betim1,beti,betip1,gamim1,gami,gamip1 real alfjm1,alfj,alfjp1,betjm1,betj,betjp1,gamjm1,gamj,gamjp1 real gbdim1,gbdi,gbdip1,gbdj,gbdjm1,gbdjp1 real gbdya,gbdyb,gbdyc,gbdyd common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax c c set specified boundaries in rhs from phi c if (nxa.eq.1) then i = 1 do j=1,ny cf(i,j,10) = phi(i,j) end do end if if (nxb.eq.1) then i = nx do j=1,ny cf(i,j,10) = phi(i,j) end do end if if (nyc.eq.1) then j = 1 do i=1,nx cf(i,j,10) = phi(i,j) end do end if if (nyd.eq.1) then j = ny do i=1,nx cf(i,j,10) = phi(i,j) end do end if return end subroutine resmh2cr(nx,ny,phi,ncx,ncy,phic,rhsc,cof,resf) c c restrict residual from fine to coarse mesh using fully weighted c residual restriction c implicit none integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps integer nx,ny,ncx,ncy,i,j,ic,jc common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps real rhsc(ncx,ncy),resf(nx,ny) real phi(0:nx+1,0:ny+1),phic(0:ncx+1,0:ncy+1) real cof(nx,ny,10) c c set phic zero c do jc=0,ncy+1 do ic=0,ncx+1 phic(ic,jc) = 0.0 end do end do c c compute residual on fine mesh in resf c CC!$OMP PARALLEL DO SHARED(resf,cof,phi,nx,ny) PRIVATE(i,j) do j=1,ny do i=1,nx resf(i,j) = cof(i,j,10)-( + cof(i,j,1)*phi(i+1,j)+ + cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,3)*phi(i,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,5)*phi(i-1,j)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,7)*phi(i,j-1)+ + cof(i,j,8)*phi(i+1,j-1)+ + cof(i,j,9)*phi(i,j)) end do end do c c restrict resf to coarse mesh in rhsc c call res2(nx,ny,resf,ncx,ncy,rhsc,nxa,nxb,nyc,nyd) return end subroutine relmh2cr(nx,ny,phi,cof,tx,ty,sum) c c relaxation for muh2cr c implicit none integer nx,ny real phi(*),cof(*),tx(*),ty(*),sum(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps if (method.eq.0) then ! point relaxation call relmh2crp(nx,ny,phi,cof) else if (method.eq.1) then ! line x relaxation call slxmh2cr(nx,ny,phi,cof,tx,sum) else if (method.eq.2) then ! line y relaxation call slymh2cr(nx,ny,phi,cof,ty,sum) else if (method.eq.3) then ! line x&y relaxation call slxmh2cr(nx,ny,phi,cof,tx,sum) call slymh2cr(nx,ny,phi,cof,ty,sum) end if return end subroutine relmh2crp(nx,ny,phi,cof) c c gauss-seidel four color point relaxation c implicit none integer nx,ny,i,j,lcolor,i1,i2,i3,i4,it integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps real phi(0:nx+1,0:ny+1),cof(nx,ny,10) i1 = 1 i2 = 4 i3 = 3 i4 = 2 c c sweep four colored grid points c do lcolor=1,4 CC!$OMP PARALLEL DO SHARED(i1,cof,phi,nx,ny) PRIVATE(i,j) do j=1,ny,4 do i=i1,nx,4 phi(i,j) = (cof(i,j,10) - ( + cof(i,j,1)*phi(i+1,j) + + cof(i,j,2)*phi(i+1,j+1) + + cof(i,j,3)*phi(i,j+1) + + cof(i,j,4)*phi(i-1,j+1) + + cof(i,j,5)*phi(i-1,j) + + cof(i,j,6)*phi(i-1,j-1) + + cof(i,j,7)*phi(i,j-1) + + cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do CC!$OMP PARALLEL DO SHARED(i2,cof,phi,nx,ny) PRIVATE(i,j) do j=2,ny,4 do i=i2,nx,4 phi(i,j) = (cof(i,j,10) - ( + cof(i,j,1)*phi(i+1,j) + + cof(i,j,2)*phi(i+1,j+1) + + cof(i,j,3)*phi(i,j+1) + + cof(i,j,4)*phi(i-1,j+1) + + cof(i,j,5)*phi(i-1,j) + + cof(i,j,6)*phi(i-1,j-1) + + cof(i,j,7)*phi(i,j-1) + + cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do CC!$OMP PARALLEL DO SHARED(i3,cof,phi,nx,ny) PRIVATE(i,j) do j=3,ny,4 do i=i3,nx,4 phi(i,j) = (cof(i,j,10) - ( + cof(i,j,1)*phi(i+1,j) + + cof(i,j,2)*phi(i+1,j+1) + + cof(i,j,3)*phi(i,j+1) + + cof(i,j,4)*phi(i-1,j+1) + + cof(i,j,5)*phi(i-1,j) + + cof(i,j,6)*phi(i-1,j-1) + + cof(i,j,7)*phi(i,j-1) + + cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do CC!$OMP PARALLEL DO SHARED(i4,cof,phi,nx,ny) PRIVATE(i,j) do j=4,ny,4 do i=i4,nx,4 phi(i,j) = (cof(i,j,10) - ( + cof(i,j,1)*phi(i+1,j) + + cof(i,j,2)*phi(i+1,j+1) + + cof(i,j,3)*phi(i,j+1) + + cof(i,j,4)*phi(i-1,j+1) + + cof(i,j,5)*phi(i-1,j) + + cof(i,j,6)*phi(i-1,j-1) + + cof(i,j,7)*phi(i,j-1) + + cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do c c set periodic virtual boundaries as necessary c if (nxa.eq.0) then do j=1,ny phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do end if if (nyc.eq.0) then do i=1,nx phi(i,0) = phi(i,ny-1) phi(i,ny+1) = phi(i,2) end do end if c c permute (i1,i2,i3,i4) for next color c it = i4 i4 = i3 i3 = i2 i2 = i1 i1 = it end do return end subroutine slxmh2cr(nx,ny,phi,cof,tx,sum) c c line relaxation in the x direction (periodic or nonperiodic) c implicit none integer nx,ny,i,ib,j integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps real phi(0:nx+1,0:ny+1),cof(nx,ny,10),tx(nx,ny,*),sum(ny) c c set periodic y virtual boundary if necessary c if (nyc.eq.0) then do i=1,nx phi(i,0) = phi(i,ny-1) phi(i,ny+1) = phi(i,2) end do end if if (nxa.ne.0) then CC!$OMP PARALLEL DO SHARED(cof,phi,tx,nx,ny) PRIVATE(i,ib,j) c c x direction not periodic, sweep odd j lines c do j=1,ny,2 do i=1,nx phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,3)*phi(i,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,7)*phi(i,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do c c forward sweep c do i=2,nx phi(i,j) = phi(i,j)-tx(i-1,j,1)*phi(i-1,j) end do c c backward sweep c phi(nx,j) = phi(nx,j)/tx(nx,j,2) do ib=2,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j))/tx(i,j,2) end do end do c c sweep even j lines forward and back c CC!$OMP PARALLEL DO SHARED(cof,phi,tx,nx,ny) PRIVATE(i,ib,j) do j=2,ny,2 do i=1,nx phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,3)*phi(i,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,7)*phi(i,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do do i=2,nx phi(i,j) = phi(i,j)-tx(i-1,j,1)*phi(i-1,j) end do phi(nx,j) = phi(nx,j)/tx(nx,j,2) do ib=2,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j))/tx(i,j,2) end do end do else c c x direction periodic c do j=1,ny sum(j) = 0.0 phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do c c sweep odd lines forward and back c CC!$OMP PARALLEL DO SHARED(sum,cof,phi,tx,nx,ny) PRIVATE(i,j,ib) do j=1,ny,2 do i=1,nx-1 phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,3)*phi(i,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,7)*phi(i,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do c c forward sweep c do i=2,nx-2 phi(i,j) = phi(i,j)-tx(i,j,1)*phi(i-1,j) end do do i=1,nx-2 sum(j) = sum(j)+tx(i,j,5)*phi(i,j) end do phi(nx-1,j) = phi(nx-1,j)-sum(j) c c backward sweep c phi(nx-1,j) = phi(nx-1,j)/tx(nx-1,j,2) phi(nx-2,j) = (phi(nx-2,j)-tx(nx-2,j,4)*phi(nx-1,j))/ + tx(nx-2,j,2) do ib=4,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j)-tx(i,j,4)* + phi(nx-1,j))/tx(i,j,2) end do end do c c set periodic and virtual points for j odd c do j=1,ny,2 phi(nx,j) = phi(1,j) phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do c c sweep even j lines c CC!$OMP PARALLEL DO SHARED(sum,cof,phi,tx,nx,ny) PRIVATE(i,j,ib) do j=2,ny,2 do i=1,nx-1 phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,3)*phi(i,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,7)*phi(i,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do c c forward sweep c do i=2,nx-2 phi(i,j) = phi(i,j)-tx(i,j,1)*phi(i-1,j) end do do i=1,nx-2 sum(j) = sum(j)+tx(i,j,5)*phi(i,j) end do phi(nx-1,j) = phi(nx-1,j)-sum(j) c c backward sweep c phi(nx-1,j) = phi(nx-1,j)/tx(nx-1,j,2) phi(nx-2,j) = (phi(nx-2,j)-tx(nx-2,j,4)*phi(nx-1,j))/ + tx(nx-2,j,2) do ib=4,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j)-tx(i,j,4)* + phi(nx-1,j))/tx(i,j,2) end do end do c c set periodic and virtual points for j even c do j=2,ny,2 phi(nx,j) = phi(1,j) phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do end if c c set periodic y virtual boundaries if necessary c if (nyc.eq.0) then do i=1,nx phi(i,0) = phi(i,ny-1) phi(i,ny+1) = phi(i,2) end do end if return end subroutine slymh2cr(nx,ny,phi,cof,ty,sum) c c line relaxation in the y direction (periodic or nonperiodic) c implicit none integer nx,ny,i,j,jb integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, + maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, + kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, + iguess, maxcy,method,nwork,lwork,itero,ngrid, + klevel,kcur,kcycle,iprer,ipost,intpol,kps real phi(0:nx+1,0:ny+1),cof(nx,ny,10),ty(ny,nx,*),sum(nx) c c set periodic and virtual x boundaries if necessary c if (nxa.eq.0) then do j=1,ny phi(0,j) = phi(nx-1,j) phi(nx,j) = phi(1,j) phi(nx+1,j) = phi(2,j) end do end if if (nyc.ne.0) then c c y direction not periodic c CC!$OMP PARALLEL DO SHARED(cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=1,nx,2 do j=1,ny phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ + cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,5)*phi(i-1,j)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do c c forward sweep thru odd x lines c do j=2,ny phi(i,j) = phi(i,j)-ty(j-1,i,1)*phi(i,j-1) end do c c backward sweep c phi(i,ny) = phi(i,ny)/ty(ny,i,2) do jb=2,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1))/ty(j,i,2) end do end do c c forward sweep even x lines c CC!$OMP PARALLEL DO SHARED(cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=2,nx,2 do j=1,ny phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ + cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,5)*phi(i-1,j)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do do j=2,ny phi(i,j) = phi(i,j)-ty(j-1,i,1)*phi(i,j-1) end do c c backward sweep c phi(i,ny) = phi(i,ny)/ty(ny,i,2) do jb=2,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1))/ty(j,i,2) end do end do else c c y direction periodic c do i=1,nx sum(i) = 0.0 phi(i,0) = phi(i,ny-1) phi(i,ny) = phi(i,1) phi(i,ny+1) = phi(i,2) end do c c forward sweep odd x lines c CC!$OMP PARALLEL DO SHARED(sum,cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=1,nx,2 do j=1,ny-1 phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ + cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,5)*phi(i-1,j)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do do j=2,ny-2 phi(i,j) = phi(i,j)-ty(j,i,1)*phi(i,j-1) end do do j=1,ny-2 sum(i) = sum(i)+ty(j,i,5)*phi(i,j) end do phi(i,ny-1) = phi(i,ny-1)-sum(i) c c backward sweep c phi(i,ny-1) = phi(i,ny-1)/ty(ny-1,i,2) phi(i,ny-2) = (phi(i,ny-2)-ty(ny-2,i,4)*phi(i,ny-1))/ + ty(ny-2,i,2) do jb=4,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1)-ty(j,i,4)* + phi(i,ny-1))/ty(j,i,2) end do end do c c set odd periodic and virtual y boundaries c do i=1,nx,2 phi(i,0) = phi(i,ny-1) phi(i,ny) = phi(i,1) phi(i,ny+1) = phi(i,2) end do c c forward sweep even x lines c CC!$OMP PARALLEL DO SHARED(sum,cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=2,nx,2 do j=1,ny-1 phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ + cof(i,j,2)*phi(i+1,j+1)+ + cof(i,j,4)*phi(i-1,j+1)+ + cof(i,j,5)*phi(i-1,j)+ + cof(i,j,6)*phi(i-1,j-1)+ + cof(i,j,8)*phi(i+1,j-1)) end do do j=2,ny-2 phi(i,j) = phi(i,j)-ty(j,i,1)*phi(i,j-1) end do do j=1,ny-2 sum(i) = sum(i)+ty(j,i,5)*phi(i,j) end do phi(i,ny-1) = phi(i,ny-1)-sum(i) c c backward sweep c phi(i,ny-1) = phi(i,ny-1)/ty(ny-1,i,2) phi(i,ny-2) = (phi(i,ny-2)-ty(ny-2,i,4)*phi(i,ny-1))/ + ty(ny-2,i,2) do jb=4,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1)-ty(j,i,4)* + phi(i,ny-1))/ty(j,i,2) end do end do c c set even periodic and virtual y boundaries c do i=2,nx,2 phi(i,0) = phi(i,ny-1) phi(i,ny) = phi(i,1) phi(i,ny+1) = phi(i,2) end do end if c c set periodic and virtual x boundaries if necessary c if (nxa.eq.0) then do j=1,ny phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do end if return end