!----------------------------------------------------------------------- subroutine mud(pe,jntl,isolve) use shr_kind_mod ,only: r8 => shr_kind_r8 use cam_abortutils ,only: endrun use edyn_solve,only: nc,ncee,cee ! implicit none integer,intent(in) :: isolve integer jntl ! ! set grid size params ! integer,parameter :: iixp = 5 , jjyq = 3, iiex = 5, jjey = 5 integer,parameter :: nnx=iixp*2**(iiex-1)+1, nny=jjyq*2**(jjey-1)+1 ! ! estimate work space for point relaxation (see mud2cr.d) ! integer,parameter :: llwork=(7*(nnx+2)*(nny+2)+76*nnx*nny)/3 real(r8) :: phi(nnx,nny),rhs(nnx,nny),work(llwork) real(r8) :: time0,time1 ! ! put integer and floating point argument names in contiguous ! storage for labelling in vectors iprm,fprm ! ! btf 1/21/14: dimension iprm(17) to match iprm in edyn_muh2cr.F90 ! integer iprm(16),mgopt(4) integer iprm(17),mgopt(4) real(r8) :: fprm(6) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nx,ny, & iguess,maxcy,method,nwork,lwrkqd,itero common/itmud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nx,ny, & iguess,maxcy,method,nwork,lwrkqd,itero real(r8) :: xa,xb,yc,yd,tolmax,relmax common/ftmud2cr/xa,xb,yc,yd,tolmax,relmax equivalence(intl,iprm) equivalence(xa,fprm) integer i,j,ierror real(r8) :: PE(NNX,1) integer maxcya DATA MAXCYA/150/ integer mm,nn,jj,jjj real(r8) :: pi ! ! set input integer arguments ! MM = NNX NN = NNY PI = 4._r8*ATAN(1._r8) ! ! SET INPUT INTEGER PARAMETERS ! INTL = JNTL ! ! set boundary condition flags ! nxa = 0 nxb = 0 nyc = 2 nyd = 1 ! ! set grid sizes from parameter statements ! ixp = iixp jyq = jjyq iex = iiex jey = jjey nx = nnx ny = nny ! ! set multigrid arguments (w(2,1) cycling with fully weighted ! residual restriction and cubic prolongation) ! mgopt(1) = 2 mgopt(2) = 2 mgopt(3) = 1 mgopt(4) = 3 ! ! set for one cycle ! maxcy = maxcya ! ! set no initial guess forcing full multigrid cycling ! iguess = 0 ! ! set work space length approximation from parameter statement ! nwork = llwork ! ! set line z relaxation ! method = 3 ! ! set end points of solution rectangle in (x,y) space ! xa = -pi xb = pi yc = 0.0_r8 yd = 0.5_r8*pi ! ! set error control flag ! tolmax = 0.01_r8 ! ! set right hand side in rhs ! initialize phi to zero ! if (isolve >= 0) then ! called from dynamo do i=1,nx do j=1,ny RHS(I,J) = CEE(I+(J-1)*NX+9*NX*NY) phi(i,j) = 0.0_r8 end do end do ! ! set specified boundaries in phi ! DO I=1,NX PHI(I,NY) = RHS(I,NY)/CEE(I+(NY-1)*NX+8*NX*NY) END DO ! ! set specified boundaries in phi ! endif ! isolve ! ! intialization call ! call mud2cr(iprm,fprm,work,rhs,phi,mgopt,ierror,isolve) if (ierror.gt.0) call endrun('mud call init mud2cr') ! ! attempt solution ! intl = 1 call mud2cr(iprm,fprm,work,rhs,phi,mgopt,ierror,isolve) if (ierror.gt.0) call endrun('mud call solve mud2cr') ! ! COPY PHI TO PE ! DO J = 1,NY JJ = NY+J-1 JJJ = NY+1-J DO I = 1,NX PE(I,JJ) = PHI(I,J) PE(I,JJJ) = PHI(I,J) END DO END DO ! ITRANS = 0 ! CALL EZCNTR(PE(1,JMX0),IMX0,JMX0) ! ITRANS = 1 ! CALL SET(.05,.95,.05,.95,-1.,1.,-1.,1.,1) ! CALL CONREC(PE(1,JMX0),IMX0,IMX0,JMX0,0.,0.,0.,1,0,-1430B) ! CALL FRAME ! ITRANS = 0 ! CALL EZCNTR(PE(1,JMX0),IMX0,JMX0) ! ITRANS = 1 end subroutine mud !----------------------------------------------------------------------- ! ! file mud2cr.f (version 4.0 modified for Cicley 2/99) ! . ! . MUDPACK version 4.0 . ! . . ! ... author and specialist ! ! John C. Adams (National Center for Atmospheric Research) (retired) ! ! ... For MUDPACK information, visit the website: ! (https://www2.cisl.ucar.edu/resources/legacy/mudpack) ! ! ... purpose ! ! mud2cr attempts to produce a second order finite difference ! approximation to the two dimensional nonseparable elliptic ! partial differential equation with cross derivative ! ! cxx(x,y)*pxx + cxy(x,y)*pxy + cyy(x,y)*pyy + ! ! cx(x,y)*px + cy(x,y)*py + ce(x,y)*pe(x,y) = r(x,y) ! ! ... documentation ! ! see the documentation on above website for a complete discussion ! of how to use subroutine mud2cr. ! ! ... required MUDPACK files ! ! mudcom.f ! ! ! subroutine mud2cr(iparm,fparm,work,rhs,phi,mgopt, & ierror,isolve) use shr_kind_mod ,only: r8 => shr_kind_r8 implicit none integer,intent(in) :: isolve integer iparm,mgopt,ierror integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, & maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, & kcycle,iprer,ipost,intpol,kps real(r8) :: fparm,xa,xb,yc,yd,tolmax,relmax integer kpbgn,kcbgn,ktxbgn,ktybgn,nxk,nyk,isx,jsy integer int,iw,k,kb,nx,ny,ic,itx,ity dimension iparm(17),fparm(6),mgopt(4) real(r8) :: work(*),phi(*),rhs(*) common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, & iguess, maxcy,method,nwork,lwork,itero,ngrid, & klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax common/mud2crc/kpbgn(50),kcbgn(50),ktxbgn(50),ktybgn(50), & nxk(50),nyk(50),isx,jsy data int / 0 / save int ! ierror = 1 intl = iparm(1) ! set and check intl on all calls if (intl*(intl-1).ne.0) return if (int.eq.0) then int = 1 if (intl.ne.0) return ! very first call is not intl=0 end if ierror = 0 ! ! set arguments internally ! these will not be rechecked if intl=1! ! nxa = iparm(2) nxb = iparm(3) nyc = iparm(4) nyd = iparm(5) ixp = iparm(6) jyq = iparm(7) iex = iparm(8) jey = iparm(9) ngrid = max0(iex,jey) nfx = iparm(10) nfy = iparm(11) iguess = iparm(12) maxcy = iparm(13) method = iparm(14) nwork = iparm(15) kcycle = mgopt(1) if (kcycle .eq. 0) then ! set defaults kcycle = 2 iprer = 2 ipost = 1 intpol = 3 else iprer = mgopt(2) ipost = mgopt(3) intpol = mgopt(4) end if xa = fparm(1) xb = fparm(2) yc = fparm(3) yd = fparm(4) tolmax = fparm(5) if (intl .eq. 0) then ! intialization call ! ! check input arguments ! ierror = 2 ! check boundary condition flags if (max0(nxa,nxb,nyc,nyd).gt.2) return if (min0(nxa,nxb,nyc,nyd).lt.0) return if (nxa.eq.0.and.nxb.ne.0) return if (nxa.ne.0.and.nxb.eq.0) return if (nyc.eq.0.and.nyd.ne.0) return if (nyc.ne.0.and.nyd.eq.0) return ierror = 3 ! check grid sizes if (ixp.lt.2) return if (jyq.lt.2) return ierror = 4 ngrid = max0(iex,jey) if (iex.lt.1) return if (jey.lt.1) return if (ngrid.gt.50) return ierror = 5 if (nfx.ne.ixp*2**(iex-1)+1) return if (nfy.ne.jyq*2**(jey-1)+1) return ierror = 6 if (iguess*(iguess-1).ne.0) return ierror = 7 if (maxcy.lt.1) return ierror = 8 if (method.lt.0 .or. method.gt.3) return ierror = 9 ! compute and test minimum work space isx = 0 if (method.eq.1 .or. method.eq.3) then if (nxa.ne.0) isx = 3 if (nxa.eq.0) isx = 5 end if jsy = 0 if (method.eq.2 .or. method.eq.3) then if (nyc.ne.0) jsy = 3 if (nyc.eq.0) jsy = 5 end if kps = 1 do k=1,ngrid ! set subgrid sizes nxk(k) = ixp*2**(max0(k+iex-ngrid,1)-1)+1 nyk(k) = jyq*2**(max0(k+jey-ngrid,1)-1)+1 nx = nxk(k) ny = nyk(k) kps = kps+(nx+2)*(ny+2)+nx*ny*(10+isx+jsy) end do iparm(16) = kps+(nfx+2)*(nfy+2) ! exact minimum work space lwork = iparm(16) if (lwork .gt. nwork) return ierror = 10 ! check solution region if (xb.le.xa .or. yd.le.yc) return ierror = 11 if (tolmax .lt. 0.0_r8) return ierror = 12 ! multigrid parameters if (kcycle.lt.0) return if (min0(iprer,ipost).lt.1) return if ((intpol-1)*(intpol-3).ne.0) return if (max0(kcycle,iprer,ipost).gt.2) then ierror = -5 ! inefficient multigrid cycling end if if (ierror .gt. 0) ierror = 0 ! no fatal errors ! ! set work space pointers and discretize pde at each grid level ! iw = 1 do kb=1,ngrid k = ngrid-kb+1 nx = nxk(k) ny = nyk(k) kpbgn(k) = iw kcbgn(k) = kpbgn(k)+(nx+2)*(ny+2) ktxbgn(k) = kcbgn(k)+10*nx*ny ktybgn(k) = ktxbgn(k)+isx*nx*ny iw = ktybgn(k)+jsy*nx*ny ic = kcbgn(k) itx = ktxbgn(k) ity = ktybgn(k) klevel = k call dismd2cr(nx,ny,work(ic),work(itx),work(ity), & work,ierror,isolve) end do return end if ! end of intl=0 initialization call block nx = nfx ny = nfy call mud2cr1(nx,ny,rhs,phi,work) iparm(17) = itero if (tolmax.gt.0.0_r8) then ! check for convergence fparm(6) = relmax if (relmax.gt.tolmax) ierror = -1 ! flag convergenc failure end if return end subroutine mud2cr !----------------------------------------------------------------------- subroutine mud2cr1(nx,ny,rhsf,phif,wk) use shr_kind_mod ,only: r8 => shr_kind_r8 implicit none integer nx,ny real(r8) :: phif(nx,ny),rhsf(nx,ny),wk(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps real(r8) :: xa,xb,yc,yd,tolmax,relmax,phmax integer kpbgn,kcbgn,ktxbgn,ktybgn,nxk,nyk,isx,jsy integer k,kb,ip,ic,ir,ipc,irc,icc integer ncx,ncy,jj,ij,i,j,iter common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax common/mud2crc/kpbgn(50),kcbgn(50),ktxbgn(50),ktybgn(50),& nxk(50),nyk(50),isx,jsy nx = nxk(ngrid) ny = nyk(ngrid) ip = kpbgn(ngrid) ic = kcbgn(ngrid) ir = ic+9*nx*ny ! ! set phif,rhsf in wk and adjust right hand side ! call swk2(nx,ny,phif,rhsf,wk(ip),wk(ir)) if (iguess.eq.0) then ! ! no initial guess at finest grid level! ! do kb=2,ngrid k = ngrid-kb+1 nx = nxk(k+1) ny = nyk(k+1) ip = kpbgn(k+1) ir = kcbgn(k+1)+9*nx*ny ncx = nxk(k) ncy = nyk(k) ipc = kpbgn(k) icc = kcbgn(k) irc = icc+9*ncx*ncy ! ! transfer down to all grid levels ! call trsfc2(nx,ny,wk(ip),wk(ir),ncx,ncy,& wk(ipc),wk(irc)) end do ! ! adjust right hand side at all grid levels in case ! rhs or specified b.c. in phi or gbdy changed ! do k=1,ngrid nx = nxk(k) ny = nyk(k) ip = kpbgn(k) ic = kcbgn(k) call adjmd2cr(nx,ny,wk(ip),wk(ic)) end do ! ! execute one full multigrid cycle ! do k=1,ngrid-1 kcur = k call kcymd2cr(wk) nx = nxk(k+1) ny = nyk(k+1) ip = kpbgn(k+1) ipc = kpbgn(k) ncx = nxk(k) ncy = nyk(k) ! ! lift or prolong approximation from k to k+1 ! call prolon2(ncx,ncy,wk(ipc),nx,ny,wk(ip),nxa,nxb,& nyc,nyd,intpol) end do else ! ! adjust rhs at finest grid level only ! nx = nxk(ngrid) ny = nyk(ngrid) ip = kpbgn(ngrid) ic = kcbgn(ngrid) call adjmd2cr(nx,ny,wk(ip),wk(ic)) end if ! ! execute maxcy more multigrid k cycles from finest level ! kcur = ngrid do iter=1,maxcy itero = iter call kcymd2cr(wk) if (tolmax.gt.0.0_r8) then ! ! error control ! relmax = 0.0_r8 phmax = 0.0_r8 do j=1,nfy jj = j*(nfx+2) do i=1,nfx ij = jj+i+1 ! phmax = amax1(phmax,abs(wk(ij))) ! relmax = amax1(relmax,abs(wk(ij)-phif(i,j))) phmax = max(phmax,abs(wk(ij))) relmax = max(relmax,abs(wk(ij)-phif(i,j))) phif(i,j) = wk(ij) end do end do ! ! set maximum relative difference and check for convergence ! if (phmax.gt.0.0_r8) relmax = relmax/phmax if (relmax.le.tolmax) return end if end do ! ! set final interate after maxcy cycles in phif ! do j=1,nfy jj = j*(nfx+2) do i=1,nfx ij = jj+i+1 phif(i,j) = wk(ij) end do end do return end subroutine mud2cr1 !----------------------------------------------------------------------- subroutine kcymd2cr(wk) use shr_kind_mod ,only: r8 => shr_kind_r8 ! ! execute multigrid k cycle from kcur grid level ! kcycle=1 for v cycles, kcycle=2 for w cycles ! implicit none real(r8) :: wk(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps integer nx,ny,ip,ic,ipc,irc,itx,ity,ncx,ncy,l,nrel real(r8) :: xa,xb,yc,yd,tolmax,relmax integer kpbgn,kcbgn,ktxbgn,ktybgn,nxk,nyk,isx,jsy common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax common/mud2crc/kpbgn(50),kcbgn(50),ktxbgn(50),ktybgn(50),& nxk(50),nyk(50),isx,jsy integer kount(50) klevel = kcur nx = nxk(klevel) ny = nyk(klevel) ip = kpbgn(klevel) ic = kcbgn(klevel) itx = ktxbgn(klevel) ity = ktybgn(klevel) ! ! prerelax at current finest grid level ! do l=1,iprer call relmd2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do if (kcur .eq. 1) go to 5 ! ! restrict residual to kcur-1 level ! ipc = kpbgn(klevel-1) ncx = nxk(klevel-1) ncy = nyk(klevel-1) irc = kcbgn(klevel-1)+9*ncx*ncy call resmd2cr(nx,ny,wk(ip),ncx,ncy,wk(ipc),wk(irc),wk(ic),wk(kps)) ! ! set counter for grid levels to zero ! do l = 1,kcur kount(l) = 0 end do ! ! set new grid level and continue k-cycling ! klevel = kcur-1 nrel = iprer ! ! kcycle control point ! 10 continue ! ! post relax when kcur revisited ! if (klevel .eq. kcur) go to 5 ! ! count hit at current level ! kount(klevel) = kount(klevel)+1 ! ! relax at current level ! nx = nxk(klevel) ny = nyk(klevel) ip = kpbgn(klevel) ic = kcbgn(klevel) itx = ktxbgn(klevel) ity = ktybgn(klevel) do l=1,nrel call relmd2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do if (kount(klevel) .eq. kcycle+1) then ! ! kcycle complete at klevel ! ipc = ip ip = kpbgn(klevel+1) ncx = nxk(klevel) ncy = nyk(klevel) nx = nxk(klevel+1) ny = nyk(klevel+1) ! ! inject correction to finer grid ! call cor2(nx,ny,wk(ip),ncx,ncy,wk(ipc),nxa,nxb,nyc,nyd,& intpol,wk(kps)) ! ! reset counter to zero ! kount(klevel) = 0 ! ! ascend to next higher level and set to postrelax there ! klevel = klevel+1 nrel = ipost go to 10 else if (klevel .gt. 1) then ! ! kcycle not complete so descend unless at coarsest grid ! ipc = kpbgn(klevel-1) ncx = nxk(klevel-1) ncy = nyk(klevel-1) irc = kcbgn(klevel-1)+9*ncx*ncy call resmd2cr(nx,ny,wk(ip),ncx,ncy,wk(ipc),wk(irc),wk(ic),& wk(kps)) ! ! prerelax at next coarser level ! klevel = klevel-1 nrel = iprer go to 10 else ! ! postrelax at coarsest level ! do l=1,ipost call relmd2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do ipc = ip ip = kpbgn(2) ncx = nxk(1) ncy = nyk(1) nx = nxk(2) ny = nyk(2) ! ! inject correction to level 2 ! call cor2(nx,ny,wk(ip),ncx,ncy,wk(ipc),nxa,nxb,nyc,nyd,& intpol,wk(kps)) ! ! set to postrelax at level 2 ! nrel = ipost klevel = 2 go to 10 end if end if 5 continue ! ! post relax at current finest grid level ! nx = nxk(kcur) ny = nyk(kcur) ip = kpbgn(kcur) ic = kcbgn(kcur) itx = ktxbgn(kcur) ity = ktybgn(kcur) do l=1,ipost call relmd2cr(nx,ny,wk(ip),wk(ic),wk(itx),wk(ity),wk(kps)) end do return end subroutine kcymd2cr !----------------------------------------------------------------------- subroutine dismd2cr(nx,ny,cf,tx,ty,wk,ier,isolve) use edyn_solve,only: nc,ncee,cee,ceee use shr_kind_mod ,only: r8 => shr_kind_r8 use cam_abortutils ,only: endrun ! ! discretize elliptic pde for mud2cr, set nonfatal errors ! implicit none integer,intent(in) :: isolve integer nx,ny,i,j,l,im1,jm1,ier,nnx,nny real(r8) :: cf(nx,ny,10),tx(nx,ny,*),ty(ny,nx,*) real(r8) :: wk(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps real(r8) :: xa,xb,yc,yd,tolmax,relmax common/fmud2cr/xa,xb,yc,yd,tolmax,relmax ! ! CHECK FOR CONSISTENCYT WRT KLEVEL ! NNX = ixp*2**(KLEVEL-1)+1 NNY = jyq*2**(KLEVEL-1)+1 IF(NNX.NE.NX.OR.NNY.NE.NY)THEN call endrun('dismd2cr in mud') ENDIF if (isolve >= 0) then call ceee(cee(nc(6-klevel)),nx,ny,cf) endif ! ! set coefficient for specified boundaries ! if (nxa.eq.1) then i = 1 do j=1,ny do l=1,9 cf(i,j,l) = 0.0_r8 end do cf(i,j,9) = 1.0_r8 end do end if if (nxb.eq.1) then i = nx do j=1,ny do l=1,9 cf(i,j,l) = 0.0_r8 end do cf(i,j,9) = 1.0_r8 end do end if if (nyc.eq.1) then j = 1 do i=1,nx do l=1,9 cf(i,j,l) = 0.0_r8 end do cf(i,j,9) = 1.0_r8 end do end if if (nyd.eq.1) then j = ny do i=1,nx do l=1,9 cf(i,j,l) = 0.0_r8 end do cf(i,j,9) = 1.0_r8 end do end if ! ! set and factor tridiagonal matrices for line relaxation(s) if flagged ! if (method.eq.1.or.method.eq.3) then if (nxa.ne.0) then ! ! nonperiodic x line relaxation ! do i=1,nx im1 = max0(i-1,1) do j=1,ny tx(im1,j,1) = cf(i,j,5) tx(i,j,2) = cf(i,j,9) tx(i,j,3) = cf(i,j,1) end do end do call factri(ny,nx,tx(1,1,1),tx(1,1,2),tx(1,1,3)) else ! ! periodic x line relaxation ! if (nx .gt. 3) then ! ! set and factor iff nx > 3 ! do i=1,nx-1 do j=1,ny tx(i,j,1) = cf(i,j,5) tx(i,j,2) = cf(i,j,9) tx(i,j,3) = cf(i,j,1) end do end do call factrp(ny,nx,tx,tx(1,1,2),tx(1,1,3),tx(1,1,4),& tx(1,1,5),wk(kps)) end if end if end if if (method.eq.2.or.method.eq.3) then if (nyc.ne.0) then ! ! nonperiodic y line relaxation ! do j=1,ny jm1 = max0(j-1,1) do i=1,nx ty(jm1,i,1) = cf(i,j,7) ty(j,i,2) = cf(i,j,9) ty(j,i,3) = cf(i,j,3) end do end do call factri(nx,ny,ty(1,1,1),ty(1,1,2),ty(1,1,3)) else ! ! periodic y line relaxation ! if (ny .gt. 3) then ! ! set and factor iff ny > 3 ! do j=1,ny-1 do i=1,nx ty(j,i,1) = cf(i,j,7) ty(j,i,2) = cf(i,j,9) ty(j,i,3) = cf(i,j,3) end do end do call factrp(nx,ny,ty,ty(1,1,2),ty(1,1,3),ty(1,1,4),& ty(1,1,5),wk(kps)) end if end if end if return end subroutine dismd2cr !----------------------------------------------------------------------- subroutine adjmd2cr(nx,ny,phi,cf) use shr_kind_mod ,only: r8 => shr_kind_r8 ! ! adjust righthand side in cf(i,j,10) for boundary conditions ! implicit none integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps real(r8) :: xa,xb,yc,yd,tolmax,relmax integer nx,ny,i,j real(r8) :: cf(nx,ny,10),phi(0:nx+1,0:ny+1) common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps common/fmud2cr/xa,xb,yc,yd,tolmax,relmax ! ! set specified boundaries in rhs from phi ! if (nxa.eq.1) then i = 1 do j=1,ny cf(i,j,10) = phi(i,j) end do end if if (nxb.eq.1) then i = nx do j=1,ny cf(i,j,10) = phi(i,j) end do end if if (nyc.eq.1) then j = 1 do i=1,nx cf(i,j,10) = phi(i,j) end do end if if (nyd.eq.1) then j = ny do i=1,nx cf(i,j,10) = phi(i,j) end do end if return end subroutine adjmd2cr !----------------------------------------------------------------------- subroutine resmd2cr(nx,ny,phi,ncx,ncy,phic,rhsc,cof,resf) use shr_kind_mod ,only: r8 => shr_kind_r8 ! ! restrict residual from fine to coarse mesh using fully weighted ! residual restriction ! implicit none integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps integer nx,ny,ncx,ncy,i,j,ic,jc common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps real(r8) :: rhsc(ncx,ncy),resf(nx,ny) real(r8) :: phi(0:nx+1,0:ny+1),phic(0:ncx+1,0:ncy+1) real(r8) :: cof(nx,ny,10) ! ! set phic zero ! do jc=0,ncy+1 do ic=0,ncx+1 phic(ic,jc) = 0.0_r8 end do end do ! ! compute residual on fine mesh in resf ! do j=1,ny do i=1,nx resf(i,j) = cof(i,j,10)-( & cof(i,j,1)*phi(i+1,j)+ & cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,3)*phi(i,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,5)*phi(i-1,j)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,7)*phi(i,j-1)+ & cof(i,j,8)*phi(i+1,j-1)+ & cof(i,j,9)*phi(i,j)) end do end do ! ! restrict resf to coarse mesh in rhsc ! call res2(nx,ny,resf,ncx,ncy,rhsc,nxa,nxb,nyc,nyd) return end subroutine resmd2cr !----------------------------------------------------------------------- subroutine relmd2cr(nx,ny,phi,cof,tx,ty,sum) use shr_kind_mod ,only: r8 => shr_kind_r8 ! ! relaxation for mud2 ! implicit none integer nx,ny real(r8) :: phi(*),cof(*),tx(*),ty(*),sum(*) integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps if (method.eq.0) then ! point relaxation call relmd2crp(nx,ny,phi,cof) else if (method.eq.1) then ! line x relaxation call slxmd2cr(nx,ny,phi,cof,tx,sum) else if (method.eq.2) then ! line y relaxation call slymd2cr(nx,ny,phi,cof,ty,sum) else if (method.eq.3) then ! line x&y relaxation call slxmd2cr(nx,ny,phi,cof,tx,sum) call slymd2cr(nx,ny,phi,cof,ty,sum) end if return end subroutine relmd2cr !----------------------------------------------------------------------- subroutine relmd2crp(nx,ny,phi,cof) use shr_kind_mod ,only: r8 => shr_kind_r8 ! ! gauss-seidel four color point relaxation ! implicit none integer nx,ny,i,j,lcolor,i1,i2,i3,i4,it integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps real(r8) :: phi(0:nx+1,0:ny+1),cof(nx,ny,10) i1 = 1 i2 = 4 i3 = 3 i4 = 2 ! ! sweep four colored grid points ! do lcolor=1,4 !$OMP PARALLEL DO SHARED(i1,cof,phi,nx,ny) PRIVATE(i,j) do j=1,ny,4 do i=i1,nx,4 phi(i,j) = (cof(i,j,10) - ( & cof(i,j,1)*phi(i+1,j) + & cof(i,j,2)*phi(i+1,j+1) + & cof(i,j,3)*phi(i,j+1) + & cof(i,j,4)*phi(i-1,j+1) + & cof(i,j,5)*phi(i-1,j) + & cof(i,j,6)*phi(i-1,j-1) + & cof(i,j,7)*phi(i,j-1) + & cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do !$OMP PARALLEL DO SHARED(i2,cof,phi,nx,ny) PRIVATE(i,j) do j=2,ny,4 do i=i2,nx,4 phi(i,j) = (cof(i,j,10) - ( & cof(i,j,1)*phi(i+1,j) + & cof(i,j,2)*phi(i+1,j+1) + & cof(i,j,3)*phi(i,j+1) + & cof(i,j,4)*phi(i-1,j+1) + & cof(i,j,5)*phi(i-1,j) + & cof(i,j,6)*phi(i-1,j-1) + & cof(i,j,7)*phi(i,j-1) + & cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do !$OMP PARALLEL DO SHARED(i3,cof,phi,nx,ny) PRIVATE(i,j) do j=3,ny,4 do i=i3,nx,4 phi(i,j) = (cof(i,j,10) - ( & cof(i,j,1)*phi(i+1,j) + & cof(i,j,2)*phi(i+1,j+1) + & cof(i,j,3)*phi(i,j+1) + & cof(i,j,4)*phi(i-1,j+1) + & cof(i,j,5)*phi(i-1,j) + & cof(i,j,6)*phi(i-1,j-1) + & cof(i,j,7)*phi(i,j-1) + & cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do !$OMP PARALLEL DO SHARED(i4,cof,phi,nx,ny) PRIVATE(i,j) do j=4,ny,4 do i=i4,nx,4 phi(i,j) = (cof(i,j,10) - ( & cof(i,j,1)*phi(i+1,j) + & cof(i,j,2)*phi(i+1,j+1) + & cof(i,j,3)*phi(i,j+1) + & cof(i,j,4)*phi(i-1,j+1) + & cof(i,j,5)*phi(i-1,j) + & cof(i,j,6)*phi(i-1,j-1) + & cof(i,j,7)*phi(i,j-1) + & cof(i,j,8)*phi(i+1,j-1)))/cof(i,j,9) end do end do ! ! set periodic virtual boundaries as necessary ! if (nxa.eq.0) then do j=1,ny phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do end if if (nyc.eq.0) then do i=1,nx phi(i,0) = phi(i,ny-1) phi(i,ny+1) = phi(i,2) end do end if ! ! permute (i1,i2,i3,i4) for next color ! it = i4 i4 = i3 i3 = i2 i2 = i1 i1 = it end do return end subroutine relmd2crp !----------------------------------------------------------------------- subroutine slxmd2cr(nx,ny,phi,cof,tx,sum) use shr_kind_mod ,only: r8 => shr_kind_r8 ! ! line relaxation in the x direction (periodic or nonperiodic) ! implicit none integer nx,ny,i,ib,j,ii integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess,& maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur,& kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,& iguess, maxcy,method,nwork,lwork,itero,ngrid,& klevel,kcur,kcycle,iprer,ipost,intpol,kps real(r8) :: phi(0:nx+1,0:ny+1),cof(nx,ny,10),tx(nx,ny,*),sum(ny) real(r8) :: starttime,endtime ! ! replace line x with point gauss-seidel if ! x direction is periodic and nx = 3 (coarsest) ! if (nxa .eq. 0 .and. nx .eq. 3) then call relmd2crp(nx,ny,phi,cof) return end if ! ! set periodic y virtual boundary if necessary ! if (nyc.eq.0) then do i=1,nx phi(i,0) = phi(i,ny-1) phi(i,ny+1) = phi(i,2) end do end if if (nxa.ne.0) then ! ! x direction not periodic, sweep odd j lines ! !$OMP PARALLEL DO SHARED(cof,phi,tx,nx,ny) PRIVATE(i,ib,j) do j=1,ny,2 do i=1,nx phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,3)*phi(i,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,7)*phi(i,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do ! ! forward sweep ! do i=2,nx phi(i,j) = phi(i,j)-tx(i-1,j,1)*phi(i-1,j) end do ! ! backward sweep ! phi(nx,j) = phi(nx,j)/tx(nx,j,2) do ib=2,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j))/tx(i,j,2) end do end do ! ! sweep even j lines forward and back ! !$OMP PARALLEL DO SHARED(cof,phi,tx,nx,ny) PRIVATE(i,ib,j) do j=2,ny,2 do i=1,nx phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,3)*phi(i,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,7)*phi(i,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do do i=2,nx phi(i,j) = phi(i,j)-tx(i-1,j,1)*phi(i-1,j) end do phi(nx,j) = phi(nx,j)/tx(nx,j,2) do ib=2,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j))/tx(i,j,2) end do end do else ! ! x direction periodic ! do j=1,ny sum(j) = 0.0_r8 phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do ! ! sweep odd lines forward and back ! !$OMP PARALLEL DO SHARED(sum,cof,phi,tx,nx,ny) PRIVATE(i,j,ib) do j=1,ny,2 do i=1,nx-1 phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,3)*phi(i,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,7)*phi(i,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do ! ! forward sweep ! do i=2,nx-2 phi(i,j) = phi(i,j)-tx(i,j,1)*phi(i-1,j) end do do i=1,nx-2 sum(j) = sum(j)+tx(i,j,5)*phi(i,j) end do phi(nx-1,j) = phi(nx-1,j)-sum(j) ! ! backward sweep ! phi(nx-1,j) = phi(nx-1,j)/tx(nx-1,j,2) phi(nx-2,j) = (phi(nx-2,j)-tx(nx-2,j,4)*phi(nx-1,j))/ & tx(nx-2,j,2) do ib=4,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j)-tx(i,j,4)* & phi(nx-1,j))/tx(i,j,2) end do end do ! ! set periodic and virtual points for j odd ! do j=1,ny,2 phi(nx,j) = phi(1,j) phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do ! ! sweep even j lines ! !$OMP PARALLEL DO SHARED(sum,cof,phi,tx,nx,ny) PRIVATE(i,j,ib) do j=2,ny,2 do i=1,nx-1 phi(i,j) = cof(i,j,10)-(cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,3)*phi(i,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,7)*phi(i,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do ! ! forward sweep ! do i=2,nx-2 phi(i,j) = phi(i,j)-tx(i,j,1)*phi(i-1,j) end do do i=1,nx-2 sum(j) = sum(j)+tx(i,j,5)*phi(i,j) end do phi(nx-1,j) = phi(nx-1,j)-sum(j) ! ! backward sweep ! phi(nx-1,j) = phi(nx-1,j)/tx(nx-1,j,2) phi(nx-2,j) = (phi(nx-2,j)-tx(nx-2,j,4)*phi(nx-1,j))/ & tx(nx-2,j,2) do ib=4,nx i = nx-ib+1 phi(i,j) = (phi(i,j)-tx(i,j,3)*phi(i+1,j)-tx(i,j,4)* & phi(nx-1,j))/tx(i,j,2) end do end do ! ! set periodic and virtual points for j even ! do j=2,ny,2 phi(nx,j) = phi(1,j) phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do end if ! ! set periodic y virtual boundaries if necessary ! if (nyc.eq.0) then do i=1,nx phi(i,0) = phi(i,ny-1) phi(i,ny+1) = phi(i,2) end do end if return end subroutine slxmd2cr !----------------------------------------------------------------------- subroutine slymd2cr(nx,ny,phi,cof,ty,sum) use shr_kind_mod ,only: r8 => shr_kind_r8 implicit none integer nx,ny,i,j,jb integer intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy,iguess, & maxcy,method,nwork,lwork,itero,ngrid,klevel,kcur, & kcycle,iprer,ipost,intpol,kps common/imud2cr/intl,nxa,nxb,nyc,nyd,ixp,jyq,iex,jey,nfx,nfy, & iguess, maxcy,method,nwork,lwork,itero,ngrid, & klevel,kcur,kcycle,iprer,ipost,intpol,kps real(r8) :: phi(0:nx+1,0:ny+1),cof(nx,ny,10),ty(ny,nx,*),sum(nx) real(r8) :: starttime,endtime ! ! replace line y with point gauss-seidel if ! y direction is periodic and ny = 3 ! if (nyc .eq. 0 .and. ny .eq. 3) then call relmd2crp(nx,ny,phi,cof) return end if ! ! set periodic and virtual x boundaries if necessary ! if (nxa.eq.0) then do j=1,ny phi(0,j) = phi(nx-1,j) phi(nx,j) = phi(1,j) phi(nx+1,j) = phi(2,j) end do end if if (nyc.ne.0) then ! ! y direction not periodic ! !$OMP PARALLEL DO SHARED(cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=1,nx,2 do j=1,ny phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ & cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,5)*phi(i-1,j)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do ! ! forward sweep thru odd x lines ! do j=2,ny phi(i,j) = phi(i,j)-ty(j-1,i,1)*phi(i,j-1) end do ! ! backward sweep ! phi(i,ny) = phi(i,ny)/ty(ny,i,2) do jb=2,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1))/ty(j,i,2) end do end do ! ! forward sweep even x lines ! !$OMP PARALLEL DO SHARED(cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=2,nx,2 do j=1,ny phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ & cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,5)*phi(i-1,j)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do do j=2,ny phi(i,j) = phi(i,j)-ty(j-1,i,1)*phi(i,j-1) end do ! ! backward sweep ! phi(i,ny) = phi(i,ny)/ty(ny,i,2) do jb=2,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1))/ty(j,i,2) end do end do else ! ! y direction periodic ! do i=1,nx sum(i) = 0.0_r8 phi(i,0) = phi(i,ny-1) phi(i,ny) = phi(i,1) phi(i,ny+1) = phi(i,2) end do ! ! forward sweep odd x lines ! !$OMP PARALLEL DO SHARED(sum,cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=1,nx,2 do j=1,ny-1 phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ & cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,5)*phi(i-1,j)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do do j=2,ny-2 phi(i,j) = phi(i,j)-ty(j,i,1)*phi(i,j-1) end do do j=1,ny-2 sum(i) = sum(i)+ty(j,i,5)*phi(i,j) end do phi(i,ny-1) = phi(i,ny-1)-sum(i) ! ! backward sweep ! phi(i,ny-1) = phi(i,ny-1)/ty(ny-1,i,2) phi(i,ny-2) = (phi(i,ny-2)-ty(ny-2,i,4)*phi(i,ny-1))/ & ty(ny-2,i,2) do jb=4,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1)-ty(j,i,4)* & phi(i,ny-1))/ty(j,i,2) end do end do ! ! set odd periodic and virtual y boundaries ! do i=1,nx,2 phi(i,0) = phi(i,ny-1) phi(i,ny) = phi(i,1) phi(i,ny+1) = phi(i,2) end do ! ! forward sweep even x lines ! !$OMP PARALLEL DO SHARED(sum,cof,phi,ty,nx,ny) PRIVATE(i,j,jb) do i=2,nx,2 do j=1,ny-1 phi(i,j) = cof(i,j,10)-(cof(i,j,1)*phi(i+1,j)+ & cof(i,j,2)*phi(i+1,j+1)+ & cof(i,j,4)*phi(i-1,j+1)+ & cof(i,j,5)*phi(i-1,j)+ & cof(i,j,6)*phi(i-1,j-1)+ & cof(i,j,8)*phi(i+1,j-1)) end do do j=2,ny-2 phi(i,j) = phi(i,j)-ty(j,i,1)*phi(i,j-1) end do do j=1,ny-2 sum(i) = sum(i)+ty(j,i,5)*phi(i,j) end do phi(i,ny-1) = phi(i,ny-1)-sum(i) ! ! backward sweep ! phi(i,ny-1) = phi(i,ny-1)/ty(ny-1,i,2) phi(i,ny-2) = (phi(i,ny-2)-ty(ny-2,i,4)*phi(i,ny-1))/ & ty(ny-2,i,2) do jb=4,ny j = ny-jb+1 phi(i,j) = (phi(i,j)-ty(j,i,3)*phi(i,j+1)-ty(j,i,4)* & phi(i,ny-1))/ty(j,i,2) end do end do ! ! set even periodic and virtual y boundaries ! do i=2,nx,2 phi(i,0) = phi(i,ny-1) phi(i,ny) = phi(i,1) phi(i,ny+1) = phi(i,2) end do end if ! ! set periodic and virtual x boundaries if necessary ! if (nxa.eq.0) then do j=1,ny phi(0,j) = phi(nx-1,j) phi(nx+1,j) = phi(2,j) end do end if return end subroutine slymd2cr !-----------------------------------------------------------------------