!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ! glint_integrate.F90 - part of the Community Ice Sheet Model (CISM) ! !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! ! Copyright (C) 2005-2014 ! CISM contributors - see AUTHORS file for list of contributors ! ! This file is part of CISM. ! ! CISM is free software: you can redistribute it and/or modify it ! under the terms of the Lesser GNU General Public License as published ! by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! CISM is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! Lesser GNU General Public License for more details. ! ! You should have received a copy of the Lesser GNU General Public License ! along with CISM. If not, see . ! !+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #ifdef HAVE_CONFIG_H #include "config.inc" #endif !> integration of functions using Romberg integration module glint_integrate use glimmer_global, only : dp implicit none public :: romberg_int, romberg_int_prms !------------------------------------------------------------- contains !------------------------------------------------------------- !> double precision function to perform Romberg Integration on function. !! !! This routine is an implementation of ACM algorithm 60, by F. L. Bauer. !! (Comm. ACM, vol. 4, issue 6, June 1961). recursive real(dp) function romberg_int(fct,lgr,rgr) implicit none interface !> function to be integrated function fct(x) use glimmer_global, only : dp implicit none real(dp), intent(in) :: x !< the argument real(dp) :: fct end function fct end interface real(dp),intent(in) :: lgr !< Lower bound real(dp),intent(in) :: rgr !< Upper bound integer,parameter :: ord = 6 real(dp),dimension(ord+1) :: t real(dp) :: l,u,m integer :: f,h,j,n l=rgr-lgr t(1)=(fct(lgr)+fct(rgr))/2.0 n=1 do h=1,ord u=0 m=l/(2*n) do j=1,2*n-1,2 u=u+fct(lgr+j*m) end do t(h+1)=((u/n)+t(h))/2.0 f=1 do j=h,1,-1 f=f*4 t(j)=t(j+1)+(t(j+1)-t(j))/(f-1) end do n=2*n end do romberg_int=t(1)*l end function romberg_int !------------------------------------------------------------- !> double precision function to perform Romberg Integration on function. !! !! This routine is an implementation of ACM algorithm 60, by F. L. Bauer. !! (Comm. ACM, vol. 4, issue 6, June 1961). recursive real(dp) function romberg_int_prms(fct,lgr,rgr,params) implicit none interface !> the function to be integrated function fct(x,params) use glimmer_global, only : dp implicit none real(dp), intent(in) :: x !< the argument real(dp), intent(in), dimension(:) :: params !< an array of function parameters real(dp) :: fct end function fct end interface real(dp),intent(in) :: lgr !< Lower bound real(dp),intent(in) :: rgr !< Upper bound real(dp),intent(in),dimension(:) :: params !< parameters for function integer,parameter :: ord = 6 real(dp),dimension(ord+1) :: t real(dp) :: l,u,m integer :: f,h,j,n l=rgr-lgr t(1)=(fct(lgr,params)+fct(rgr,params))/2.0 n=1 do h=1,ord u=0 m=l/(2*n) do j=1,2*n-1,2 u=u+fct(lgr+j*m,params) end do t(h+1)=((u/n)+t(h))/2.0 f=1 do j=h,1,-1 f=f*4 t(j)=t(j+1)+(t(j+1)-t(j))/(f-1) end do n=2*n end do romberg_int_prms=t(1)*l end function romberg_int_prms !------------------------------------------------------------- end module glint_integrate !-------------------------------------------------------------