1 2	Tropospheric tidal effects on the middle and upper atmosphere
3 4	M. E. Hagan, A. Maute, and R. G. Roble
5	High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO,
6 7	Abstract
8	Numerical experiments that explore the effects of tides of tropospheric origin on
9	the upper and middle atmosphere reveal strong signatures of an eastward propagating
10	zonal wavenumber-3 diurnal tide (DE3), which peaks near 110 km and penetrates into
11	the upper thermosphere. We demonstrate that DE3 dissipation in the upper
12	mesosphere and lower thermosphere (MLT) strongly accelerates the zonal mean wind
13	field, affecting both the altitude and magnitude of the low latitude jets. We also
14	quantify, for the first time, a stationary planetary wave-4 oscillation (sPW4) in the
15	MLT, which is excited by nonlinear interaction between the DE3 and the migrating
16	diurnal tide (DW1). Our results suggest that the sPW4 modulates the DE3 MLT
17	response and may impact the E-region dynamo as well as ionospheric and
18	thermospheric signatures aloft.
19	Introduction
20	Recent satellite borne diagnostics of the low latitude upper atmosphere reveal
21	longitude variations in 1356 nm airglow brightness measurements [e.g., Sagawa et al.,
22	2005; Immel et al., 2006; England et al., 2006b], electron density [Lin et al., 2007,

23 Lühr et al., 2007], electric field [England et al., 2006a; Kil et al., 2007], electrojet

24	[Maus and Lühr, 2007], and thermospheric wind data [Häusler et al., 2007; Lühr et
25	al., 2007] with 4-peaked structures. In their report on the results of a numerical
26	experiment with the thermosphere-ionosphere-mesosphere-electrodynamics general
27	circulation model (TIME-GCM), Hagan et al., [2007] demonstrated that the eastward
28	propagating zonal wavenumber-3 diurnal tide (DE3) could propagate from the
29	troposphere into the lower thermosphere, modulate the E-region dynamo process, and
30	thereby introduce a 4-peaked F-region wave structure when observed from
31	Sun-synchronous orbit. This simulation included global-scale wave model (GSWM)
32	forcing after Hagan and Forbes [2002, 2003] at the TIME-GCM lower boundary (ca.,
33	30 km) to account for atmospheric tides of tropospheric origin, including a DE3
34	component which is excited by latent heat release in deep tropical clouds.
35	In this report, we highlight the results of a complementary set of TIME-GCM
36	calculations to highlight nonmigrating tidal effects on the neutral atmosphere.
37	TIME-GCM Simulations
38	The TIME-GCM is a three-dimensional time-dependent model developed at the
39	National Center for Atmospheric Research (NCAR) and designed to simulate the
40	circulation, temperature, electrodynamics, and compositional structure of the upper
41	atmosphere and ionosphere by calculating neutral gas heating, dynamics,
42	photoionization, electrodynamics, and the compositional structure on a global grid

43 from first principles and for a given solar irradiance spectrum which varies with solar 44 activity. The effects of sub-grid-scale gravity waves are parameterized with a 45 modified *Lindzen* [1981] type scheme that is extended to include molecular damping 46 effects in the lower thermosphere. *Roble and Ridley* [1994], *Roble* [1995; 1996] and 47 references therein provide a more complete description of the TIME-GCM.

48 Wu et al. (2008a) reported the need to increase the resolution of the TIME-GCM in order to properly resolve diurnal tidal fields. As in Hagan et al. [2007], we ran the 49 50 TIME-GCM with 2.5° by 2.5° horizontal resolution and 4 grid points per scale height 51 in the vertical for the results reported herein; twice the resolution that characterized 52 other earlier simulations. Our focus is solar minmum and geomagnetically quiescent 53 September conditions. Thus, we invoked a 10.7-cm solar radio flux (F10.7) value of 54 75, a hemispheric power value [after Evans, 1987] of 8 GW, and a cross-cap potential 55 drop of 30 kV to respectively represent solar radiative and auroral forcing in our 56 September simulations (i.e., day of year 270).

57 The TIME-GCM inherently accounts for atmospheric tides that are excited by 58 the absorption of ultraviolet and extreme ultraviolet radiation in the middle and upper 59 atmosphere. We accounted for tidal components of tropospheric origin that propagate 60 upward into the model domain by perturbing the TIME-GCM lower boundary (ca., 10 61 hPa; ~30 km) with the September tidal fields from the GSWM. These GSWM results

[Hagan and Forbes, 2002; 2003] include tropospheric tidal responses excited by the
absorption of infrared radiation as well as latent heat release associated with
condensation in deep convective clouds in the tropics.

65 Migrating tides excited by the absorption of solar infrared radiation in the troposphere have long been included in TIME-GCM simulations, since their impacts 66 67 on the atmosphere aloft are well established [e.g., Hagan, 1996; McLandress et al., 68 1996; Fesen et al., 2000]. However, the TIME-GCM March simulations reported by 69 Hagan et al. [2007] represent the first time that nonmigrating (i.e., not 70 Sun-synchronous) tides were introduced at the model lower boundary. We devised a 71 set of TIME-GCM simulations reported herein to further explore nonmigrating tidal 72 effects during September equinox. We conducted a so-called realistic simulation by 73 including all tidal components at the lower boundary along with a control simulation 74 that only included the GSWM diurnal and semidiurnal migrating tides. Differences 75 between the realistic and control simulation results allow us to quantify nonmigrating 76 tidal effects in the TIME-GCM.

77 **Results**

The zonal mean zonal winds that characterize the realistic TIME-GCM simulation are illustrated in the left panel of Figure 1 as a function of latitude, pressure level (hereafter PL), and altitude. As expected during equinox these

81	TIME-GCM mesospheric and lower thermospheric winds are fairly symmetric about
82	the equator. The zonal mean zonal winds are predominantly eastward below about
83	120 km (PL -4), and westward aloft. The exceptions are a westward jet centered over
84	the equator between 65 and 85 km (PLs -12.5 and -9.5) that exceeds 60m/s and peaks
85	near 80 km (PL -10), and a high northern latitude thermospheric circulation that is
86	driven by the ionospheric convection electric field. The westward jet in the upper
87	mesosphere is driven by parameterized gravity wave effects combined with migrating
88	diurnal tidal dissipation (e.g., Forbes et al., 1993).
89	The northern hemispheric middle atmosphere eastward jet speed exceeds 70 m/s
90	near 35°N and 70 km (PL -12), while the counterpart in the southern hemisphere
91	peaks at 50 m/s near 35°S and 70km. The remaining eastward jet maximizes over the
92	equator in the mesopause region near 100 km (PL -7) with speeds that exceed 60 m/s.
93	The morphology and the salient features of these TIME-GCM winds are consistent
94	with zonal mean zonal wind climatologies. But, the magnitudes of the eastward jets in
95	the middle-upper atmosphere are larger than the zonal mean winds inferred from
96	UARS measurements (e.g., McLandress et al., 1996).
97	Also illustrated in Figure 1 (right panel) are the wind differences between the
98	realistic and control simulations (i.e., all tides minus migrating tide results), which
99	quantify the effects of the nonmigrating components on the zonal mean circulation.

100	The characterizing feature is an eastward jet that peaks at 90 km (PL -8.5) over the
101	equator and is confined to +/- 30° and 80 to 110 km. These winds are attributable to
102	the dissipating eastward tidal components, which produce changes in the zonal winds
103	in excess of 50 m/s. This zonal wind acceleration affects both the magnitude and the
104	location of the equatorial jets illustrated in the left panel of Figure 1, shifting the peak
105	westward winds to 75 km. This is 5 km lower and 20 m/s weaker than the
106	corresponding jet is in the absence of the eastward nonmigrating tidal driver (not
107	illustrated). This same acceleration also affects the overlying eastward jet. Not only
108	does the 90-km wind reversal occur approximately 10 km lower than the reversal in
109	the control simulation, the jet is 20m/s stronger with a peak value that exceeds 50 m/s
110	near ~100 km over the equator. While the nonmigrating tides significantly affect the
111	strength of this mesopause region eastward jet, Figure 1 also illustrates that these tides
112	have no impact on the eastward jets in the middle latitude mesosphere.
113	Figure 2 illustrates the TIME-GCM latitude-height structure of the zonal wind
114	tidal amplitudes associated with the dominant diurnal tidal responses in our realistic
115	simulation, namely, the migrating (i.e., westward propagating zonal wavenumber 1;
116	DW1) and the eastward propagating zonal wavenumber 3 diurnal tide (DE3) tides. As
117	anticipated, the DW1 structure below PL -4 (~120 km) is markedly different from the
118	results aloft (Figure 2; left panel). The DW1 that propagates from the troposphere,

119	upper stratosphere, and lower mesosphere into the mesopause region peaks near
120	+/-25° and PL -6.5 (~102 km). This component is partially excited in the TIME-GCM
121	and also arises from the GSWM lower boundary forcing. The upper thermospheric
122	DW1 amplitude is attributable to the absorption of extreme ultraviolet (EUV) solar
123	radiation in situ and is calculated self-consistently in the model domain. This
124	component increases with increasing altitude above PL -4 (~120 km) with the
125	strongest signatures at high-middle latitudes. The contrasting behavior of the upward
126	propagating and evanescent components of the DW1 in our simulation exhibits the
127	expected salient features of the so-called (1,1) and (1,-2) Hough modes, respectively,
128	as described by classical tidal theory (e.g., Chapman and Lindzen, 1970).
129	In contrast, the DE3 is solely excited in the troposphere and is attributable to the
130	GSWM forcing in our realistic simulation; it does not appear in our control simulation
131	results (not illustrated). The DE3 amplitude (Figure 2; right panel) is consistent with
132	an upward propagating tidal component, increasing with increasing altitude. The peak
133	amplitude near PL -5.5 (~107 km) approaches 45 m/s. Although the DE3 dissipates at
134	higher altitudes, it penetrates well into the TIME-GCM upper thermosphere
135	maintaining amplitudes larger than 15 m/s above PL 0 (~210 km) at equatorial and
136	low latitudes. The behavior of the DE3 is consistent with that of a diurnal Kelvin
137	wave with strong temperature (not illustrated) and zonal wind amplitudes that are

138 largely confined to low latitudes and a comparatively weak meridional wind139 perturbation (not illustrated).

140	The DW1 and DE3 tides can interact with one another to produce two waves, the
141	eastward propagating wavenumber-2 semidiurnal tide (SE2) and stationary planetary
142	wave 4 (sPW4). Evidence of the excitation of so-called secondary waves resulting
143	from nonlinear interactions between primary waves from data analyses and in
144	modeling investigations was previously reported [e.g., Teitelbaum and Vial, 1991;
145	Hagan and Roble, 2001; Pancheva et al., 2002] Herein, we report on the first
146	evidence of the excitation of a stationary planetary wave (i.e., sPW4) by the
147	interaction between a migrating and nonmigrating tidal component. This is a
148	definitive result because the sPW4 is not excited at the TIME-GCM lower boundary,
149	and it is not present in the control simulation. This result is particularly important to
150	the interpretation of measurements made by slowly precessing satellites that cannot
151	distinguish between the signatures of the DE3 wave and the SE2 and sPW4 secondary
152	waves on a short-term basis.

Figure 3 illustrates the SE2 (left panel) and sPW4 (right panel) zonal wind amplitudes from our realistic simulation. Unlike the sPW4, the tropospheric latent heat tidal source in the GSWM also includes an SE2, so it is introduced at the TIME-GCM lower boundary. Although the SE2 is comparatively weak (i.e.,

157	amplitudes < 10 m/s), it is present throughout most of the model domain. The largest
158	mesopause region SE2 signature is the equatorial ~10 m/s peak at about 100 km (PL
159	-7). There are secondary SE2 peaks midlatitude peaks; ~6 m/s at 45° N and ~107 km
160	(PL -5.5), and in excess of 8 m/s at 40° S and \sim 140 km (PL -3). The much stronger
161	sPW4 is more confined; there is a single 25 m/s peak centered over the equator at
162	\sim 105 km (PL -6). Amplitudes of 5-10 m/s characterize the low-mid latitude response
163	throughout the upper mesosphere and lower thermosphere (i.e., 85-120 km; PL ranges
164	from -9 to -4) between about 20° and 35° both north and south of the equator. Notably,
165	equatorial sPW4 amplitudes in excess of 5/ms extend well into the thermosphere
166	above PL 0 (~210 km).

The comparative strength of the aforementioned wave components is readily 167 168 seen in the equatorial profiles of zonal wind amplitudes from the realistic simulation 169 illustrated in Figure 4, which also includes the migrating semidiurnal tide (SW2) 170 results. The DE3 dominates the response in the upper mesosphere and into the lower 171 thermosphere (i.e., 85-120 km; PL between -9 and -4), peaking at about 45 m/s near ~105 km (PL -6), while the in-situ generated DW1 dominates the response aloft, 172 173 above ~180 km (PL -1). The DW1 and sPW4 zonal wind amplitudes are significant 174 and comparable throughout much of the equatorial upper mesosphere and lower 175 thermosphere, with peak values in excess of 25 m/s at ~105 km (PL -6). Notably, the DE3 amplitude remains large (~20 m/s) into the upper thermosphere, where it is comparable to the equatorial SW2 zonal wind perturbation. Both the SE2 and sPW4 also penetrate into the highest part of the TIME-GCM domain but with significantly smaller magnitudes of order 5 m/s.

180 **Discussion and Summary**

181 Observational evidence from space-borne instruments demonstrates that the DE3 182 is a ubiquitous feature of the low latitude upper mesosphere and lower thermosphere, 183 and that it exhibits strong seasonal variability, maximizing during August-September 184 (e.g. Forbes et al., 2003; 2008, Oberheide et al., 2006, Wu et al., 2008). This suggests that the September TIME-GCM results presented herein represent an upper limit of 185 186 the potential DE3 impact on the middle and upper atmosphere. Notably, our zonal 187 wind acceleration results (Figure 1) exceed a previous estimate for DE3 effects during 188 August by almost a factor of two. Forbes et al. [2006] used a quasi-linear 189 time-dependent model after Miyahara and Wu (1989) to simulate a DE3 tide with an 190 equatorial peak temperature amplitude of ~25°K. This produced an effective eastward 191 jet in excess of 20 m/s at low latitudes between about 90 and 120 km. The tidal 192 forcing in the Forbes et al. [2006] calculation was explicitly calibrated to approximate the DE3 temperature perturbation observed by the TIMED/SABER satellite 193 194 instrument during 2002, suggesting that the GSWM climatological September forcing

195	that characterizes our realistic simulation may overestimate the 2002 DE3 excitation.
196	Alternatively, tidal dissipation in the upper mesosphere and lower thermosphere may
197	be underestimated in the TIME-GCM. Wu et al., (2008b) reported that the interannual
198	variability in the TIMED/TIDI DE3 zonal wind tide was of order 14-24 m/s at ~105
199	km during the months of September in 2002 through 2006. Like the aforementioned
200	SABER results, the TIDI observational diagnostics contain inherent uncertainties
201	associated 60-day-averaging analyses. Nevertheless, our TIME-GCM DE3 winds are
202	significantly (i.e., 15-25 m/s) larger. In spite of the amplitude overestimates, the
203	dynamical features that we report herein, including DE3 propagation into the upper
204	atmosphere, DE3 interaction with the DW1 producing sPW4 and an SE2 tide, and
205	DE3 dissipation and acceleration of the zonal mean flow represent fundamental
206	physical processes that are self-consistently represented in the TIME-GCM.
207	The TIME-GCM perturbations that we report herein also have implications for
208	the interpretation of wave-4 signatures that are routinely observed in near
209	Sun-synchronous satellite observations of the low-latitude thermosphere and
210	ionosphere, examples of which are referenced in our introduction. Specifically, our
211	investigation demonstrates that the DE3 can penetrate into the upper thermosphere
212	and directly modulate the thermosphere-ionosphere coupling processes at F-region
213	altitudes. Thus, the wave-4 signatures observed in the F-region may result from a

214 combination of these direct effects and the indirect effects produced by DE3 215 modulation of the E-region dynamo process as described by Hagan et al. [2007]. 216 Further, the sPW4 may also modulate the E-region dynamo or propagate into the 217 upper atmosphere and produce a wave-4 signature from Sun-synchronous orbit. The 218 SE2 tide is similarly capable, but our TIME-GCM results suggest that the DE3 drivers 219 dominate the wave-4 ionospheric response with increasingly smaller contributions 220 from the sPW4 and SE2. Although both the DW1 and SW2 are important to the 221 dynamics of the thermosphere, neither play a role in explaining this longitudinal 222 variability, since migrating tides are longitudinally invariant when observed from near 223 Sun-synchronous orbit.

224 The nonmigrating tidal effects reported herein are even more complicated for 225 comparable TIME-GCM calculations during solstice conditions. These are beyond the 226 purview of this report. However, in the aggregate the TIME-GCM and GSWM results 227 point to unresolved questions regarding tropospheric tidal forcing, warranting additional analyses of tropospheric water vapor, clouds, as well as long and 228 229 short-wave radiative budgets. In addition, we need to conduct detailed 230 model-measurement comparisons to determine how well the TIME-GCM is capturing 231 the longitudinal tidal variability observed in the stratosphere, mesosphere, and lower 232 thermosphere from space, and by ground-based global networks of radars and lidars.

234 Acknowledgements.

235 The authors thank Qian Wu and Jeff Forbes for comments on the initial draft of this

- 236 report. The National Center for Atmospheric Research is supported by the National
- 237 Science Foundation.

238 **Reference**

Chapman, S., and R. S. Lindzen (1970), *Atmospheric Tides*, 201 pp., D. Reidel,
Norwell, Mass.

240 N 241

- England, S. L., S. Maus, T. J. Immel, and S. B. Mende (2006a), Longitudinal variation
 of the E-region electric fields caused by atmospheric tides, *Geophys. Res. Lett.*, 33,
 L21105, doi:10.1029/2006GL027465.
- 245
- England, S. L., T. J. Immel, E. Sagawa, S. B. Henderson, M. E. Hagan, S. B. Mende, H.
 U. Frey, C. M. Swenson, and L. J. Paxton (2006b), Effect of atmospheric tides on
 the morphology of the quiet time, postsunset equatorial ionospheric anomaly, J. *Geophys. Res.*, 111, A10S19, doi:10.1029/2006JA011795.
- 250

- 254
- Fesen, C. G., G. Crowley, R. G. Roble, A. D. Richmond, B. G. Fejer (2000), Simulation
 of the pre-reversal enhancement in the low latitude vertical ion drifts, *Geophys. Res. Lett.*, 27(13), 1851-1854, 10.1029/2000GL000061.
- 258

- Forbes, J. M., R. G. Roble, and C. G. Fesen (1993), Acceleration, heating, and
 composition mixing of the thermopshere due to upward propagating tides, J. *Geophys. Res.*, 98(A1), 311–322.
- Forbes, J. M., X. Zhang, W. Ward, and E. R. Talaat (2002), Nonmigrating diurnal tides
 in the thermosphere, *J. Geophys. Res.*, 107(D23), 4322, doi:10.1029/2001JD001232,
 2002.
- 266
- Forbes, J. M., J. M. Russell III, S. Miyahara, X. Zhang, S. E. Palo, M. Mlynczak, C. J.
 Mertens, and M. E. Hagan (2006), Troposphere-Thermosphere tidal coupling as
 measured by the SABER instrument on TIMED during July-September 2002, *J. Geophys. Res.*, 111, A10S06, doi:10.1029/2005JA011492.
- Hagan, M. E., and J. M. Forbes (2002), Migrating and nonmigrating diurnal tides in the
 middle and upper atmosphere excited by tropospheric latent heat release, *J. Geophys. Res.*, 107(D24), 4754, doi:10.1029/2001JD001236.
- 275
- Hagan, M. E. and R. G. Roble, Modeling diurnal tidal variability with the NCAR
 TIME-GCM, J. Geophys. Res., 106, 24,869-24,882, 2001.
- 278
- Hagan, M. E., and J. M. Forbes (2003), Migrating and nonmigrating semidiurnal tides
 in the upper atmosphere excited by tropospheric latent heat release, *J. Geophys. Res.*, *108*(A2), 1062, doi:10.1029/2002JA009466.
- 282

Evans, D. S., Global Statistical Patterns of Auroral Phenomena (1987), *Proceedings of the Symposium on Quantitative Modeling of Magnetospheric - Ionospheric Coupling Processes*, p. 325, Kyoto Japan.

<sup>Hagan, M. E., A. I., Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L.
England (2007), Connections between deep tropical clouds and the Earth's
ionosphere,</sup> *Geophys. Res. Lett.*, *34*, L20109, doi:10.1029/2007GL030142.

- 286
- Häusler, K., H. Lühr, S. Rentz, and W. Köhler (2007), A statistical analysis of
 longitudinal dependences of upper thermospheric zonal winds at dip equator
 latitudes derived from CHAMP, *J. Atmos. Solar-Terr. Phys.*,
 doi:10.1016/j.jastp.2007.04.004.
- 290 291
- Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H.
 U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial ionospheric
 morphology by atmospheric tides, *Geophys. Res. Lett.*, 33, L15108,
 doi:10.1029/2006GL026161.
- 296
- Kil H., S.-J. Oh, M. C. Kelley, L. J. Paxton, S. L. England, E. Talaat, K.-W. Min, S.-Y.
 Su (2007), Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1, *Geophys. Res. Lett.*, 34, L14110, doi:10.1029/2007GL030018.
- 300
- 301 Lin, C. H., W. Wang, M. E. Hagan, C. C. Hsiao, T. J. Immel, M. L. Hsu, J. Y. Liu, L. J. 302 Paxton, T. W. Fang, and C. H. Liu (2007), Plausible effect of atmospheric tides on 303 observed equatorial ionosphere by the FORMOSAT-3/COSMIC: the 304 Three-dimensional electron density structures, J. Geophys. Res., 34, L11112, 305 doi:10.1029/2007GL029265.
- 306
- Lindzen, R. S. (1981), Turbulence and stress owing to gravity wave and tidal
 breakdown, J. Geophys. Res., 86, 9707-9714.
- Lühr, H., K. Häusler, and C. Stolle (2007), Longitudinal variation of F region electron
 density and thermospheric zonal wind caused by atmospheric tides, *Geophys. Res.*
- 312 *Lett.* 34, L16102, doi:10.1029/2007GL030639.
- 313
- Lühr, H., M. Rother, K. Häusler, P. Alken and S. Maus (2008), The influence of
 non-migrating tides on the longitudinal variation of the equatorial electrojet, J. *Geophys. Res.*, in press.
- 317
- McLandress, C., G. G. Shepherd, B. H. Solheim, M. D. Burrage, P. B. Hays, and W. R.
 Skinner (1996), Combined mesosphere/thermosphere winds using WINDII and
 HRDI data from the Upper Atmosphere Research Satellite, J. Geophys. Res.,
 101(D6), 10,441–10,453.
- 322
- Miyahara, S. and D.-H. Wu (1989), Effects of solar tides on the zonal mean circulation
 in the lower thermosphere: solstice condition. *Journal of Atmospheric and Terrestrial Physics* 51 (1989), 635–647.
- Oberheide, J., Q. Wu, T. L. Killeen, M. E. Hagan, and R. G. Roble (2006), Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: Monthly
 climatologies and seasonal variations, *J. Geophys. Res.*, 111, A10S03, doi:10.1029/2005JA011491.
- 331
- Pancheva, D., E. Merzlyakov, N. J. Mitchell, Yu. Portnyagin, A. H. Manson, Ch. Jacobi,
 C. E. Meek, Y. Luo, R. R. Clark, W. K. Hocking, J. MacDougall, H. G. Muller, D.
 Kürschner, G. O. L. Jones, R. A. Vincent, I. M. Reid, W. Singer, K. Igarashi, G. I.

- Fraser, A. N. Fahrutdinova, A. M. Stepanov, L. M. G. Poole, S. B. Malinga, B. L.
 Kashcheyev and A. N. Oleynikov (2002), Global-scale tidal variability during the
 PSMOS campaign of June–August 1999: interaction with planetary waves,
 doi:10.1016/S1364-6826(02)00199-2.
- 339
- Roble, R. G. (1995), Energetics of the mesosphere and thermosphere, *The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory*, AGU Monograph 87.
- 343

Roble, R. G. (1995), The NCAR Thermosphere-Ionosphere-MesosphereElectrodynamics General Circulation Model (TIME-GCM), *Ionosphere Models*,
STEP Handbook on Ionospheric Models (ed. R. W. Schunk), Utah State University.

- Roble, R. G., and E. C. Ridley (1994), A thermosphere-ionosphere-mesosphereelectrodynamics general circulation model (TIME-GCM): Equinox solar cycle
 minimum simulations (30-500 km), *Geophys. Res. Lett.*, 21, 417-420.
- 351

Sagawa, E., T. J. Immel, H. U. Frey, and S. B. Mende (2005), Longitudinal structure of
the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. *Geophys. Res.*, 110, A11302, doi:10.1029/2004JA010848.

355

Teitelbaum, H., and F. Vial (1991), On the tidal variability induced by non-linear interaction with planetary waves. Journal of Geophysical Research 96, 14169–14178.

- 360 Wu, Q., D. A. Ortland, T. L. Killeen, R. G. Roble, M. E. Hagan, H.-L. Liu, S. C. Solomon, J. Xu, W. R. Skinner, and R. J. Niciejewski (2008a), Global distribution 361 362 and interannual variations of mesospheric and lower thermospheric neutral wind 363 diurnal tide: 1. Migrating tide. J. Geophys. Res. 113. A05308, doi:10.1029/2007JA012542. 364
- 365

Wu Q., D. A. Ortland, T. L. Killeen, R. G. Roble, M. E. Hagan, H.-L. Liu, S. C. 366 Solomon, J. Xu, W. R. Skinner, R. J. Niciejewski (2008b), Global distribution and 367 interannual variations of mesospheric and lower thermospheric neutral wind diurnal 368 369 tide: 2. Nonmigrating tide, J. Geophys. Res., 113, A05309, 370 doi:10.1029/2007JA012543.

- 371
- 372

373374 Figure Captions

- 375
- 376 Figure 1. Contours of TIME-GCM zonal mean zonal wind (m/s) versus geographic
- 377 latitude and pressure level (lnp0/p)/altitude (km) during September solar minimum
- 378 conditions (left) and the wind differences (right) that are attributable to nonmigrating

tides of tropospheric origin (right). See text for details.

380

381	Figure 2. TIME-GCM migrating (left) and eastward propagating zonal wave number
382	3 (right) diurnal zonal wind amplitudes (m/s) versus latitude and pressure level
383 384	(lnp0/p) from the September solar minimum simulation.
385	Figure 3. Same as Figure 2, except for the eastward propagating zonal wave number 2
386	semidiurnal (left) and the stationary planetary wave 4 (right) zonal wind amplitudes
387 388	(m/s).

389	Figure 4. TIME-GCM equatorial zonal wind amplitude (m/s) profiles for the
390	dominant global waves that characterize the September solar minimum results; the
391	migrating diurnal (solid) and semidiurnal (long dash) tides, the eastward propagating
392	zonal wavenumber 3 diurnal tide (medium dash), the eastward propagating zonal
393	wavenumber 2 semidiurnal tide (short dash), and stationary planetary wave 4
394	(combination long-short dash).

395

396 Figure 1. Contours of TIME-GCM zonal mean zonal wind (m/s) versus geographic

397 latitude and pressure level (ln p0/p)/altitude (km) during September solar minimum

398 conditions (left) and the wind differences (right) that are attributable to nonmigrating

399 tides of tropospheric origin (right). See text for details.

401

402 Figure 2. TIME-GCM migrating (left) and eastward propagating zonal wave number

- 403 3 (right) diurnal zonal wind amplitudes (m/s) versus latitude and pressure level
- 404 (lnp0/p) from the September solar minimum simulation.

408 Figure 3. Same as Figure 2, except for the eastward propagating zonal wave number 2

409 semidiurnal (left; cm/s) and the stationary planetary wave 4 (right; m/s) zonal wind

410 amplitudes

412 Figure 4. TIME-GCM equatorial zonal wind amplitude (m/s) profiles for the

413 dominant global waves that characterize the September solar minimum results; the

414 migrating diurnal (solid) and semidiurnal (long dash) tides, the eastward propagating

415 zonal wavenumber 3 diurnal tide (medium dash), the eastward propagating zonal

416 wavenumber 2 semidiurnal tide (short dash), and stationary planetary wave 4

417 (combination long-short dash).