Elsevier Editorial System(tm) for Journal of Atmospheric and Solar-Terrestrial Physics Manuscript Draft

Manuscript Number:

Title: The Equatorial and Low Latitude Ionosphere Within the Context of Global Modeling

Article Type: Special Issue:Ionosph/Thermosph-MKelley

Keywords: Ionospheric variability; General Circulation Modeling; Coupling of Atmospheric Regions; Equatorial Aeronomy; Low Latitude Ionosphere.

Corresponding Author: Miss Joei Wroten, B.S.

Corresponding Author's Institution: Boston University

First Author: Michael Mendillo, Ph.D.

Order of Authors: Michael Mendillo, Ph.D.; Joei Wroten, B.S.; Raymond Roble, Ph.D.; Henry Rishbeth, Ph.D.

Abstract: The Thermosphere-Ionosphere-Mesosphere-Electrodynamics Coupled Model TIME-GCM, coupled to the NCEP lower atmosphere model, is used to simulate the noontime ionospheric peak electron density NmF2 at low latitudes for the year 2002. The modeled NmF2 at Ascension Island and Darwin matches the general trend of the data fairly well throughout the year, but at Jicamarca it is about double the observed NmF2, so the equatorial trough is shallower in the model than actually observed. At all sites the actual day-to-day variability of NmF2 is about twice the modeled variability, possibly because of influences at lower heights in the atmosphere.

1	The Equatorial and Low Latitude Ionosphere
2	Within the Context of Global Modeling
3	Michael Mendillo ^a , Joei Wroten ^{a,*} , Raymond Roble ^b and Henry Rishbeth ^(c,a)
4	
5	^a Center for Space Physics, Boston University, Boston, MA 02215 USA
6	^b High Altitude Observatory, National Center for Atmospheric Research,
7	Boulder, CO 80307 US
8	^c School of Physics and Astronomy, University of Southampton,
9	Southampton, SO17 1BJ, UK
10	
11	mendillo@bu.edu, jwroten@bu.edu, roble@hao.ucar.edu, hr@phys.soton.ac.uk
12	
13	Abstract: The Thermosphere-Ionosphere-Mesosphere-Electrodynamics Coupled Model
14	TIME-GCM, coupled to the NCEP lower atmosphere model, is used to simulate the
15	noontime ionospheric peak electron density NmF2 at low latitudes for the year 2002. The
16	modeled NmF2 at Ascension Island and Darwin matches the general trend of the data
17	fairly well throughout the year, but at Jicamarca it is about double the observed NmF2, so
18	the equatorial trough is shallower in the model than actually observed. At all sites the
19	actual day-to-day variability of NmF2 is about twice the modeled variability, possibly
20	because of influences at lower heights in the atmosphere.

^{*} Corresponding Author. Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, U. S. A. Tel: +00-1-617-353-2631; fax: +00-1-617-353-6463; E-mail address: jwroten@bu.edu

21	Keywords: Ionospheric variability, General Circulation Modeling, Coupling of
22	Atmospheric Regions, Equatorial Aeronomy, Low Latitude Ionosphere.

1. Introduction.

25

26 Historically, the study of the terrestrial ionosphere was most often done within the 27 context of three latitude zones: high latitudes (auroral and polar cap), middle latitudes 28 (equatorward of the trough, poleward of the Appleton Anomaly), equatorial and low 29 latitudes (within the crests of the Appleton Anomaly, which is otherwise known as the 30 equatorial ionization anomaly, EIA). Such distinctions are less relevant today as global 31 models address the full upper atmospheric system with couplings between latitude zones, 32 as well as to and from regions above (magnetosphere) and below (troposphere-33 stratosphere). All of the basic physical processes acting upon the ionosphere are now 34 well understood, and thus the success of models depends upon correct simulation 35 techniques for those processes and, of course, the accuracy of input parameters. 36 37 There are several ways to assess the results: (1) Do well-known morphology patterns in 38 specific regions appear correctly in the results from global model? (2) Do the models 39 reproduce observed day-to-day variability? (3) Do simulations of large disturbance 40 effects, e.g., thermospheric-ionospheric storms, agree with observed case study events? 41 To address item (3) in a comprehensive way, it is first required to validate the basic 42 simulation capabilities of a model by addressing item (1). Day-to-day variability (2) is in 43 many ways the most difficult to address since it includes both background morphology

and variable sources of perturbations (but not always extreme ones). Having the correct
blend of all processes on each day of a year is clearly the most challenging task for a true
first principles global model.

47

48 The suite of models developed at the National Center for Atmospheric Research (NCAR) 49 over the past decades offers the opportunity to address these issues via detailed 50 comparisons of predictions with actual observations. First, using a set of ten 51 representative ionosonde stations at mid-latitudes, values of the ionosphere's maximum 52 electron density (NmF2) were studied using six years of data with moderate solar flux 53 (1960, 1967, 1970, 1978, 1983 and 1988), for which the mean F10.7 was 144 units and 54 mean Ap was 15 (Rishbeth and Mendillo, 2001). Then, the Thermosphere-Ionosphere-55 Mesosphere-Electrodynamical General Circulation Model (TIME-GCM) coupled with 56 the lower atmosphere's Community Climate Model 3 (CCM-3) was run for a full year 57 with constant solar and geomagnetic sources typified by F10.7 = 140 and Ap = 4. This 58 enabled item (1) to be studied as a climatological process and item (2) to be studied using 59 only variable sources from below (Mendillo et al., 2002). When compared to 60 observations at six mid-latitude ionosonde stations, the results pointed to the important role of meridional winds, and to a lesser extent composition (O/N₂ ratio), as the dominant 61 62 contributor to day-to-day variability. For stations such as Slough in the northern 63 hemisphere and Port Stanley in the southern hemisphere, the observed monthly 64 variability of 20% (daytime) and 40-60% (nighttime) were simulated as 10% (daytime) 65 and 20-30% (nighttime) by the model. With variability only possible via day-to-day 66 changes in solar zenith angle and coupling from below (solar and geomagnetic sources

67	being constant for the full simulation year), the central conclusion reached was that total
68	variability indeed has a significant contribution from non-solar and geomagnetic forcings.
69	Future model development has thus been aimed at exploring alternate methods of
70	portraying this upward coupling.
71	
72	2. Model Characteristics and Data Sources
73	
74	2.1 TIME-GCM-NCEP.
75	
76	Roble (2000) described how the TIME-GCM was coupled to the CCM-3 in order to
77	investigate how sources of variability generated in the troposphere and stratosphere
78	propagate into the thermosphere and ionosphere. To investigate another method of
79	coupling from the lower atmosphere, the TIME-GCM was subsequently adapted to flux-
80	coupling from the National Center for Environmental Predictions (NCEP) model
81	(Randel, 1992). NCEP provides forcings of geopotential height and temperature at the 10
82	hPa pressure level (about 28 km) every 24 hours. Zonal and meridional winds at this
83	lower boundary set the planetary wave structure around the globe. Superimposed upon
84	these are diurnal and semi-diurnal propagating tides derived from the Global Scale Wave
85	Model (GSWM) of Hagan et al. (1999). When added to the thermosphere-ionosphere
86	components, the TIME-GCM-NCEP spans heights from about 30 km to a top pressure
87	level near 500 km.
88	

89 For the upper atmosphere, all of the standard solar and geomagnetic inputs remained as before, as well as the grid spacing of 5° in latitude and longitude horizontally and 2 grid 90 91 points per neutral scale height vertically, with time steps of 5 minutes. Rather than using 92 a 'generic' year for the simulation, the TIME-GCM-NCEP model was run for the full 93 year 2002. The model used as input the actual F10.7 daily index, with high latitude 94 (auroral) input sources parameterized using the 3-hour geomagnetic index Kp. During 95 the year F10.7 decreases from about 240 to 150 with several fluctuations, with an average 96 for the year of 180 that is appropriate for a year of moderately high solar activity. The 97 results from the 365-day run created a new set of global output parameters-an enormous 98 amount of information to examine. Thus, the first step was to characterize performance 99 at mid-latitudes using observed 2002 NmF2 data from the same set of ionosonde stations 100 previously examined in Rishbeth and Mendillo (2001) and Mendillo et al. (2002). 101 Encouraged by the results from this new study at mid-latitudes (Rishbeth et al., 2008), we 102 now turn to the equatorial domain and, for this pilot study, limit our comparisons to three 103 ionosonde stations.

104

106

107 For our low latitude study, the three ionosonde stations chosen are based on two selection

108 criteria: maximizing the availability of data for the full year, and their locations at

109 different latitudes in different longitude zones. The selected stations are: Jicamarca, Peru

110 (12°S, 283°E, -3° geomagnetic latitude), Ascension Island in the Atlantic sector (8°S,

111 346°E, -10° geomagnetic latitude), and Darwin, Australia (13°S, 131°E, -22°

^{105 2.2} Data Sources.

geomagnetic latitude). It so happens that all three stations are in the southern hemisphere but, given that geomagnetic latitude is the dominant influence in regions spanning the equatorial ionization anomaly, hemispheric differences and longitude variations should be of lesser importance, and thus we expect these sites to represent the geomagnetic equator, the equatorward flank of the EIA, and poleward of the EIA crest.

117

118 Figure 1 (a, b, c) show the observed behavior of NmF2 at each of these sites using hourly 119 values, with panels divided by calendar month. All data are provided in UT and thus our 120 analyses for different longitude sectors are also conducted in UT, but noon and midnight 121 local time (LT) are marked on the time axis at the bottom of each figure. There are 122 several diurnal and seasonal features to note from these plots. Starting with the 123 equatorial site Jicamarca, Figure 1(a) shows that there are essentially two types of diurnal 124 patterns. From January to April, there are three periods of local maxima: pre-noon, late-125 afternoon, and nighttime. This is particularly prominent in March and April, when the 126 absolute values of NmF2 are the highest of the year. Then, from June to October, the 127 diurnal pattern is more uniform during the daytime, followed by a nighttime secondary 128 maximum, particularly clear in September and October. The absolute values of daytime 129 NmF2 are clearly lower than in other months. May and November appear as transitions 130 between these two basic patterns. That the March and October equinox periods are so 131 different is perhaps not widely appreciated. We defer a discussion of the physical causes 132 of these diurnal features to Sections 4 and 5, and continue here with morphologies from 133 the other two stations, and then model results.

135	Ascension Island is near the southern crest of the EIA. As seen from Figure 1(b), data
136	sets for January, April, September are too sparse to discuss. All other months show a very
137	high degree of variability; e.g., compare July and October with Jicamarca data for those
138	months in Figure 1(a). The pattern of three diurnal maxima found at Jicamarca is not
139	consistently found in any month at Ascension Island. Rather, there is a daytime
140	maximum and a subsequent secondary peak either near dusk, as in March, or during
141	midnight hours, as in October, November and December. The absolute value of daytime
142	NmF2 shows a mid-year minimum and equinoctial maxima.
143	
144	In Figure 1 (c), the data from Darwin refer to a location typically poleward of the EIA.
145	From January to April, there are two diurnal maxima, before and after noon. In
146	subsequent months (with data), the diurnal pattern is one of steady decline from the pre-
147	noon maximum. For absolute values, daytime NmF2 data are at their minima in June and
148	July, with again evidence for equinoctial maxima. There are some obviously unusual
149	days in the Darwin data, probably ionospheric storms that are more pronounced at lower
150	mid-latitudes than at sites closer to the geomagnetic equator (Mendillo, 2006).
151	
152	
153	
154	
155	
156	
157	

158 **3. Simulation Results.**

159

3.1 Model Comparisons: Diurnal Patterns, Absolute Magnitudes and Day-to-DayVariability.

162

163 The TIME-GCM-NCEP model output was extracted from the grid points closest to the 164 three stations, and hourly values were used for comparisons with Figure 1. To facilitate 165 such comparisons visually, we use the format developed in Mendillo et al. (2002) in 166 which the observed monthly means ± 1 standard deviation σ are shown as a shaded 167 diurnal pattern for each month, with the daily curves from the model superimposed. 168 Inspection of Figure 2 (a, b, c) provides a quick way to assess how the model results 169 compare in diurnal shapes, absolute magnitudes and variability levels throughout the 170 year.

171

172 Again taking the stations in order of progression away from the geomagnetic equator, we 173 see that at Jicamarca the overall diurnal patterns from the model in Figure 2(a) are all 174 relatively similar for each month of the year. There is a single daytime maximum 175 followed by a nighttime secondary peak in all months but January and December. The 176 absolute values are in good agreement during nighttime hours for most of the months. 177 The daytime values are acceptable early and late in the year, with model values about a 178 factor of two too high from June to October. When all or most of the model's diurnal 179 curves fall within the red shading (e.g., in February and November), then the variability is 180 well below observations (recall that the shading is $\pm 1\sigma$ and thus should include only

181	about two-thirds of the dail	y values, not all of them).	In some months, e	e.g., July and
		, , , , , , , , , , , , , , , , , , , ,	,	

182 October, the model variability exceeds the variability in the data

184	At Darwin, Figure 2(b) shows diurnal curves that are again similar in shape in all months.
185	The second diurnal peak shown in the data (shading) is missing rather dramatically in the
186	January-April comparisons, though there is a hint of increased variability during those
187	post-sunset hours, indicating some changing physical conditions, possibly dynamical, in
188	addition to simple photochemical decay. Absolute values of daytime NmF2 are rather
189	good in some months (e.g., January-March, October), but excessively high in other
190	months (e.g., June-September). Variability is pronounced in most months, and
191	particularly so in April and July.
192	
193	At Ascension Island, Figure 2 (c) again shows consistently-shaped diurnal curves in all
194	months. The secondary maxima spanning dusk to midnight that occur in the data from
195	January to March and October to December are not captured in the model. Absolute
196	values of NmF2 are, on average, quite good in comparisons to the data over the full year.
197	Variability is pronounced in the model for each month, ranging from minimal day-to-day
198	differences in March and December, to patterns more comparable to data in other
199	months. We defer discussion of these patterns to Section 5.
200	
201	

204 3.2 Model Comparisons: Annual Patterns at Noon

205

206 To take advantage of the full capabilities of a General Circulation Model, we now 207 examine mid-day behavior of observed NmF2 within the context of model output for 208 NmF2, the photochemical O/N_2 concentration ratio, and the dynamical parameters of 209 meridional neutral winds (U_n) and vertical plasma drift (V_z) , with the latter three taken at 210 the hmF2 pressure level where NmF2 occurs. Figure 3 (a) gives the results for Jicamarca. 211 In the top panel, the noontime values from observations (solid dots) and the model (open 212 dots) are shown for each day of the year. The semi-annual pattern of equinoctial maxima 213 is apparent in both, with the effect somewhat over-represented in the model. The main 214 cause of this predominantly photochemical effect upon both absolute magnitudes and 215 seasonal patterns is the O/N_2 ratio shown in the second panel. For most of the year, there 216 is proportionally more atomic oxygen in the model (ratios > 15) and thus photo-217 production has exaggerated effects. The third panel shows the meridional neutral wind 218 which, at this latitude, is geomagnetically trans-equatorial. The pattern over the year is 219 one of poleward winds associated with lower NmF2 in the Jan and June-July solstice 220 months, but not in the December period. The wind speeds are not large, and thus the 221 transport they drive may not be as dominant to local NmF2 values as plasma dynamics. 222 The final panel gives vertical plasma drift, showing all noontime values within a factor of 223 two (10-20 m/s) throughout the year, corresponding to eastward electric fields of 0.25-0.5 224 mV/m. The annual pattern of NmF2 in the model thus depends upon these three 225 important processes, and each shows considerable variability in absolute magnitude over 226 the course of a full year.

228	Turning now to Ascension Island, Figure 3(b) presents the same analysis. In the top
229	panel, data and model are in excellent agreement at noon, both in magnitudes and in a
230	semi-annual pattern that includes considerable small scale structure. The O/N_2 ratio in
231	the second panel exhibits a rather limited range (values of 5-10) that allow
232	photochemistry to yield correct NmF2 values over the course of the year. The neutral
233	winds in the third panel are poleward for the full year, with strongest winds at mid-year
234	moving plasma to lower altitudes and thus enhancing the loss, resulting in the smallest
235	noontime peak densities shown in the top panel. Finally, the vertical E x B drift varies by
236	a factor of three (values of 5-15 m/s), providing yet another source of variability.
237	
238	The Darwin results in Figure 3(c) show excellent agreement for noon values, with a clear
239	semi-annual pattern of well-matched absolute values of NmF2 during the first half of the
240	year, and somewhat less consistent agreement after the June solstice (with missing data
241	late in the year). In the second panel, the O/N_2 ratios between 5 and 10 result in model
242	values for NmF2 consistent with observations, though somewhat too high between mid-
243	year and the September equinox. Meridional neutral winds (U_n) have an annual pattern
244	with peak poleward magnitudes at the time of the annual minimum in NmF2 (June
245	solstice). The electrodynamic vertical drift has a noticeably annual pattern, in contrast to
246	the other sites closer to the equator, with smallest drifts at the times of the annual
247	minimum in NmF2. The variability of V_z spans a factor of two (10-20 m/s), similar to
248	that found at Jicamarca.

250 3.3 Model Comparisons: Geomagnetically Quiet vs. Disturbed Days.

252	Current day research on the response of the ionosphere to increases in geomagnetic
253	activity most often deals with "case studies" of individual storm periods. At mid-
254	latitudes, there is a short but dramatic positive phase in F-layer densities and total
255	electron content (TEC), followed by one to several days of depletion (negative phase)
256	effects. For the equatorial and low latitude region, there is often a brief initial phase
257	related to the sudden growth of the equatorial ionization anomaly (EIA), producing
258	negative and positive effects at the equator and EIA latitudes, respectively. Then, a
259	period of one or more days of enhanced densities (positive phase) occurs (Prölss, 1995).
260	
261	In a recent review of TEC storm effects at all latitudes (Mendillo, 2006), emphasis was
262	placed on the statistical results that come from the analysis of many ionospheric storms.
263	The dominant "characteristic patterns" associated with geomagnetic activity (in terms of
264	the number of days affected) is thus the negative phase at mid-latitudes and the positive
265	phase at low latitudes. Changes of thermospheric composition and circulation, initiated
266	by storm-time input at auroral latitudes, are a well-accepted explanation of these delayed-
267	effect morphologies (Prölss, 1995; Rishbeth, 1975). NCAR General Circulation Models
268	have been successfully used to understand observed case study results (e.g., Lu et al.,
269	1998). While large storms occurred in 2002, here we confine our investigation to
270	examining how daily changes in geomagnetic activity input manifests itself at equatorial
271	and low latitudes and, in particular, contributes to day-to-day variability within each
272	month.

274 Figure 4 summarizes the solar and geomagnetic activity variations that occurred in 2002. 275 This is a somewhat typical pattern for a year following solar maximum, with a modest 276 decline in solar irradiance (as shown by the proxy F10.7 index), and a semi-annual 277 variation in geomagnetic activity (as shown by the Ap index). We first investigate how 278 the variability in geomagnetic activity might relate to the observed and modeled 279 variability at the three ionosonde stations. To summarize this over a full year, we turn to 280 the "parameter quilts" format used in our earlier study of mid-latitude data-model 281 comparisons (Mendillo et al, 2002). Figure 5 portrays the year 2002 in 33 segments of 282 11-days, with a single color bar used to relate changes in several key parameters. For 283 example, the top row gives the 11-day averages of Ap (in its units), with the second row 284 giving the $\pm 1\sigma$ standard deviation (in percentage) about that 11-day Ap mean. Thus, the 285 semi-annual pattern of Ap is shown by the green color bar values (typical of Ap = 25286 units) for segments within equinox months; these segments also have higher Ap 287 variabilities, as shown in the second row. Next, the observed variability of NmF2 (σ , %) 288 of the 11-day means are given from the three sites: Jicamarca (J), Ascension Island (AI) 289 and Darwin (D). At the magnetic equator, there is no correlation between the high levels 290 of observed variability and geomagnetic activity, and the same appears to be the case at 291 Ascension Island (though there are several periods of missing data). At Darwin, there is 292 a variability correlation during the segment of highest Ap (in April), but the subsequent 293 equinox has low variability when $\sigma(Ap, \%)$ of is still relatively high. 294

295 In the second and third panels, results from the model's output for variability of NmF2 296 and the O/N_2 ratio are also analyzed in the same 11-day segments at each of the three 297 sites, with results portrayed in the same quilt format. The top two rows repeat the Ap and 298 $\sigma(Ap, \%)$ to facilitate comparisons. Several impressions appear from a visual inspection: 299 (a) The model produced more variability at the geomagnetic equator than at the low 300 latitude sites, (b) there is no clear relationship of this variability to changes in 301 geomagnetic activity, and (c) the model's $\sigma(NmF2, \%)$ at all three stations are uniformly 302 lower than observed $\sigma(NmF2, \%)$ in the top panel (e.g., the color codings at AI and D are 303 dominated by blue shades (10%) corresponding to about half of the observed variability). 304 In the bottom panel, the same format is used for the O/N_2 ratio from the model. Visual 305 306 inspection suggests (a) that variability levels of composition change are comparable to 307 those of NmF2, (b) that O/N_2 variability is highest at the highest latitude (Darwin), and 308 (c) at Darwin, the variability in composition seems to be related to the variability in Ap. 309 We conclude that the TIME-GCM-NCEP produces ionospheric F-layer variability from

its simulated changes in neutral composition, but that the effects are relatively small nearthe magnetic equator, but increase towards mid-latitudes.

312

313 Another way to assess the effects of geomagnetic activity is illustrated in Figures 6 and 7.

Here we select the active month April 2002, with a monthly mean $\langle Ap \rangle_{MM} = 15$ and

 $\sigma(Ap) = \pm 20\%$, and with relatively high variability due to daily values ranging from 2 to

316 70 Ap units. The 5 days of lowest magnetic activity had $\langle Ap \rangle_{QQ} = 3$ and the 5 days of

317 highest activity had $\langle Ap \rangle_{DD} = 57$. We use the equatorial station Jicamarca for sample

318 results since it has been studied for many decades both observationally and via modeling. 319 In Figure 7 (top left panel), the diurnal curves observed on the 5 QQ days are shown by 320 green dotted lines and the corresponding days from the model are shown by green solid 321 lines. In the right panel, the same format is used for the 5 DD days, with orange dotted 322 lines for observations and solid orange lines for model output. The observations show 323 that the DD days have somewhat higher values than the QQ days, consistent with the 324 statistical storm patterns discussed above. The model shows very little difference in 325 absolute values between QQ and DD days, with a slight tendency for the quiet values 326 being higher than the disturbed values. As noted earlier, the daytime shapes of the 327 diurnal curves from the model differ significantly from observations, a trend not 328 dependent upon geomagnetic activity. For both data and model, the variability of the DD 329 days is slightly higher than that for the QQ days (and mostly at night). Taken together, 330 observations and model results confirm the impression that geomagnetic activity is not a 331 major driver for statistical variability at the geomagnetic equator.

332

333 In the lower panels, we portray model output for the O/N₂ ratio, meridional winds, and 334 vertical plasma drift. The color coding is the same as in the upper panels, i.e., the 5 QQ 335 days are shown in green and the 5 DD days are shown in orange, with the remainders in 336 solid black lines. One can see some interesting patterns. First of all, there is a clear 337 difference in the O/N_2 ratio on QQ vs. DD days (in comparison to the monthly means, 338 given by the shading), but the lower values occur during QQ days when the model gives 339 higher NmF2 values. The meridional winds (third panel) and vertical plasma drifts (fourth panel) also show separation of QQ patterns from DD patterns in the model. 340

341	Given that the overall diurnal curves in the top panel do not differ appreciably between
342	QQ vs. DD days, particularly during daytime hours, we conclude that the three factors (a)
343	photochemistry determined by O/N_2 , (b) meridional transport driven by north-south
344	winds, and (c) vertical changes in fountain effect processes driven by vertical plasma drift
345	tend to combine to produce only minor changes in NmF2 for QQ vs. DD days.
346	
347	4 Comparisons with Previous Models.
348	
349	4.1. Empirical Models.
350	
351	The morphology of the equatorial and low latitude ionosphere was, of course, one of the
352	most intriguing "anomalies" studied during the discovery era in ionospheric physics (see
353	summary in Rishbeth and Garriott, 1969). Comprehensive modeling work was
354	conducted by Anderson (1973a,b; 1981) and others, and a basic understanding of the
355	region's climatology was achieved, namely, that photochemical process were
356	significantly affected by the unique electrodynamics and neutral wind patterns at low
357	latitudes. Lee and Reinisch (2006) and Lee et al. (2008) have recently compared
358	ionosonde observations from Jicamarca during high and low solar flux years,
359	respectively, with predictions from the empirical International Reference Ionosphere IRI-
360	2001 model (Bilitza, 2001, 2003). They review the past context of such comparisons as
361	conducted, for example, by Adeniyi and Adimula (1995) and Adeniyi (2003) using
362	ionosondes near the geomagnetic equator in Africa, and by Obrou et al. (2003), Batista
363	and Abdu (2004) and Abdu et al. (2004) using ionosondes in Brazil. In all cases, there

364	was an acceptable level of agreement between the F-layer's maximum density (NmF2),
365	averaged to form monthly mean diurnal curves, from IRI and observations. Of relevance
366	to our studies at Jicamarca, Lee and Reinisch (2006) and Lee et al. (2008) used hourly
367	values from only geomagnetically quiet days ($\Sigma Kp \le 24$) to form monthly mean values
368	for two 12-month periods: 1996 (solar minimum, <f10.7> = 72) and April 1999-March</f10.7>
369	2000 (solar maximum, <f10.7> = 165). Our study for 2002 with <f10.7> = 180 units is</f10.7></f10.7>
370	thus for a comparable solar maximum period. Given that IRI is derived from
371	observations, the shapes and magnitudes of the diurnal curves at Jicamarca capture the
372	quiet-time diurnal patterns rather successfully. For TIME-GCM-NCEP, with all days of
373	a month in the simulations and data comparisons, the first-principle calculations shown in
374	Figure 2 for Jicamarca have somewhat mixed results, agreeing more in average absolute
375	values than in diurnal shapes. We now discuss this further.

377 4.2. First Principles Models.

378

379 Several years ago, the NCAR Thermosphere-Ionosphere-Electrodynamic General

380 Circulation Model (TIE-GCM) was run for a series of solar cycle conditions (minimum,

381 medium, maximum) for equinox and solstice periods. When assessed using global mean

parameters in the F2-layer (Fesen et al., 2002), the TIE-GCM's neutral temperature was

found to be within 10% of MSIS values (with a tendency for the model to be higher),

384 while the atomic oxygen mixing ratios exceeded those in MSIS by up to 20%. Global

mean electron densities from TIE-GCM, when compared to IRI, were low by up to 50%

for December solstice at solar minimum, but by less than 20% at solar maximum.

388	Upon this background, Fesen et al. (2002) then focused on the first model/data
389	comparisons at equatorial and low latitudes using a set of data taken in and around
390	Jicamarca during the months of October in 1996 and 1997 (solar minimum years). Fesen
391	et al. (2000) had previously achieved success with the TIE-GCM in simulations of the
392	pre-reversal enhancement (PRE) in the equatorial vertical plasma drift, one of the major
393	drivers of morphology patterns at low latitudes, but it is the Fesen et al. (2002) study that
394	compared F2-layer predictions with observations. For the fundamental ionospheric
395	parameter of interest here, NmF2, the TIE-GCM values during daytime hours were
396	smaller than observed values by up to 40%, and even this level of agreement was only
397	possible if the O^+ downward fluxes in the model were kept downward at all local times.
398	This unrealistic condition probably addressed shortfalls in a variety of processes not
399	adequately represented by boundary conditions at the lower level (100 km in TIE-GCM),
400	e.g., tidal modes and electron densities necessary to produce sufficiently large upward
401	plasma drifts in the pre-noon hours. Fesen et al. (2000) had shown that for successful
402	PRE simulations, the electron density in the E-layer has to be rather small, i.e., NmE =
403	$1.5 \ge 10^3 \text{ e}/\text{cm}^3$.

404

In a later study of optical emissions from the thermosphere that used the same TIE-GCM
output described in Fesen et al. (2002), Colerico et al. (2006) found that airglow
signatures from the relaxation of the PRE lagged observations by up to 1.5 hours. That
is, the observed morphology of the 6300Å inter-tropical arcs due to the relaxation of the

409 fountain effect occurred noticeably earlier in the model.

411	As a second test case, Colerico et al. (2006) examined the transient airglow pattern
412	(called a brightness wave) attributed to thermospheric dynamics arising from the
413	midnight temperature maximum (MTM). They found that airglow generated from TIE-
414	GCM output simply did not produce a brightness wave. The reason was traced to the fact
415	that the MTM was barely 30° K in the model (at 0300 LT), while observations showed it
416	to be nearly a 200° K enhancement at 0030 LT. Thus, winds (both meridional and zonal)
417	from the MTM pressure bulge were essentially missing from the model. The overall
418	conclusion reached from these three studies (Fesen et al., 2000, 2002; Colerico et al.,
419	2006) was that while most morphology patterns found in data were also produced in the
420	TIE-GCM, the local time phasing and magnitudes of crucial processes (winds and
421	vertical drifts) were in need of remedy.
422	
423	Meriwether et al. (2008) have presented the most recent study comparing observed MTM
424	characteristics with a new version of the TIEGCM (one that includes terdiurnal tides
425	forced by the non-linear interaction of the diurnal and semidiurnal tides). The model
426	again failed to achieve agreement with thermospheric data, and thus the full

427 representation of altitude/latitude coupling processes within a GCM remains as a major428 challenge.

429

430 In the present study, the new TIME-GCM-NCEP model being assessed includes the same
431 physics from the TIE-GCM for the thermosphere and ionosphere, but has a very different
432 set of conditions at a much lower simulation boundary (30 km). As shown in Figures 2-4

433	and in Tables 1-3, the TIME-GCM-NCEP absolute values have similar levels of success
434	and failure ($\pm 50\%$) as found in the earlier TIE-GCM runs for average seasonal conditions
435	at Jicamarca. Of importance is that shortfalls in absolute magnitude from TIE-GCM are
436	now generally replaced by over-estimates in TIME-GCM-NCEP. The major contribution
437	emerging from the newer model is therefore a new way to approach the topic of day-to-
438	day variability, shown here for the first time at equatorial and low latitudes.
439	
440	5 Discussion.
441	
442	5.1 Diurnal Patterns.
443	
444	The presence of the geomagnetic field at low latitudes, with a latitude dependence
445	changing from completely horizontal at the equator (maximizing E x B vertical drift) to
446	increasing inclination angles away from the equator (enhancing the effect of horizontal
447	winds), makes the issue of absolute values of NmF2 more complicated than the standard
448	compositional (O/N $_2$ ratio) control of photochemical processes. That is, over the latitude
449	span of the EIA, neutral winds and plasma drifts modulate photochemical production and
450	loss rates via redistributions of plasmas with respect to neutrals. Moreover, there can be
451	dramatic advection effects of the strong spatial gradients often present. Thus, given the
452	sensitivity to coupled processes, it is to be expected that minor shortfalls in winds and
453	electric fields generated self-consistently within a GCM result in appreciable differences
454	in the absolute magnitudes of NmF2 values when compared to observations. When

455 judged by monthly mean values (observed vs. modeled), the agreement is rather456 impressive (see Table 1 for daytime and nighttime averages).

457

458 The characteristic diurnal patterns from observations and models offer opportunities to 459 address more fundamental concerns. When discussing the observations in Figure 1, we 460 pointed to the "three diurnal maxima" that appear during several months at various 461 locations. While that is a reasonable way to describe such a pattern, the physics driving 462 such features at the equator involves only two time periods. As summarized nicely in 463 Lee and Reinisch (2006) for Jicamarca's location, there is a "mid-day-biteout" that 464 causes the apparent independent appearance of a pre-noon peak and an afternoon peak. 465 This is a consequence of the daytime "fountain effect" driven by vertical plasma drift at 466 the magnetic equator and neutrals winds blowing away from the equator at noon 467 (Rajaram and Rastogi, 1977). At dusk, the pre-reversal enhancement (PRE) again moves 468 plasma upward at the equator, with higher speeds than at noon, and the resulting effect upon the observed F-layer is another "bite-out" that recovers to an apparent 3rd maxima 469 470 later in the night. Thus, two episodes of dynamical effects account for the three diurnal 471 structures seen at the equator. At a site off the geomagnetic equator (such as Ascension 472 Island), observations do not show a dramatic transport effect from the mid-day-biteout, 473 but certainly a most pronounced one from the PRE-induced dynamics.

474

475

476 Such latitude-coupled morphologies have been addressed comprehensively in modeling
477 work by Anderson and Klobuchar (1983) for Ascension Island using a month of total

478 electron content (TEC) data in September 1979. The results of that work showed that the 479 post-noon decrease in F-layer densities results from both regular chemical decay 480 augmented by downward motions driven by both meridional (poleward) and zonal 481 (eastward) neutral winds. At Ascension Island, where the geomagnetic declination is 482 substantial, the zonal winds play a more prominent role than would be expected at other 483 longitudes, and thus the primary mechanism identified by Anderson and Klobuchar 484 (1982) is the important role of the onset of strong poleward winds after 1400 LT in 485 hastening chemical loss. When the electrodynamic "pre-reversal enhancement" of 486 vertical drifts sets in near sunset, this upward motion at 1800-2000 LT accounts for the 487 "secondary maxima" via a combination of reduced loss and advection. The monthly 488 mean observations in Figure 2 show this second mechanism to be the main cause of 489 diurnal structure at Ascension Island. Particularly good examples of coupled NmF2 490 patterns at and off the magnetic equator can be seen in March 2002 in Figures 2 (a) and 491 (b).

492

493 The successful modeling of the Ascension Island observations by Anderson and Klobuchar (1983) was not by a self-consistent model, but one using three independent 494 495 models for input conditions. These were: (a) an early version of the MSIS model for the 496 neutral atmosphere (Hedin et al., 1977), (b) a representation of the vertical plasma drift 497 measured at the Jicamarca by Woodman (1970), and (c) a composite model for winds 498 taken from theory (Mayr et al., 1979) and observations at Kwajalein (Sipler and Biondi, 499 1978; Sipler et al., 1983). Thus, each of the two key dynamical parameters (winds and E-500 fields) could be tuned independently to show via computer simulations the types of

501	background conditions needed to reproduce observations. For the TIME-GCM, however,
502	far less flexibility exists. Some reassessments nevertheless need to be done. For
503	example, as shown in Figure 6 in the simulations for April 2002, the plasma drifts at dusk
504	(PRE) are comparable (about 30 m/s) to those used by Anderson and Klobuchar (1983),
505	but the noontime values from the TIME-GCM (7 m/s) are a factor of 3 smaller. The
506	meridional winds in Anderson and Klobuchar (1983) switch from equatorward to
507	poleward at noon, and reach maximum values of 60 m/s at sunset, while in TIME-GCM
508	the meridional winds in Figure 6 (for April) have that pattern earlier, i.e., from sunrise to
509	noon and at somewhat smaller speeds.
510	
511	5.2 Variabilities.
512	
513	The observed monthly variability of midday and midnight NmF2 values at Jicamarca,
514	Ascension Island and Darwin are shown graphically in Figure 2 and numerically in
515	Tables 1, 2 and 3. The sample average results are $\pm 22\%$ daytime and $\pm 33\%$ nighttime.
516	These are comparable to the daytime/nighttime results ($\pm 18\%$ and $\pm 29\%$, respectively)
517	obtained for the equatorial stations Huancayo and Djibouti (both at 2°N geomagnetic
518	latitude) and the $\pm 17\%$ and $\pm 40\%$ at Vanimo (-11° geomagnetic latitude) in Rishbeth and
519	Mendillo (2001). Thus, the selection of stations for this study did not introduce any
520	unusual observational results for day-to-day variability effects.
521	
522	For the model results, the day vs. night monthly variabilities are $\pm 7\%$ (day) and $\pm 20\%$

523 (night) at the equator (Jicamarca), $\pm 7\%$ (day) and $\pm 15\%$ (night) at an EIA crest

524	(Ascension Island), and $\pm 10\%$ (day) and $\pm 18\%$ (night) poleward of the EIA (Darwin).
525	Thus, with all sources of variability from above (solar and geomagnetic) and below
526	(meteorological) included in the TIME-GCM-NCEP run for 2002, the overall variability
527	in the model is well below what is observed. For midday, the model predicts a third to
528	half the observed variability, while at night it improves to nearly two-thirds of the
529	observed variability.

531 When examined in terms of the 5 most quiet geomagnetic days versus the 5 most 532 disturbed days (Figure 7), significant changes in variability did not occur during daytime 533 in either data or model), while both showed some increases at night. The overall 534 impression is that this first assessment of F-layer variability produced by daily runs of a 535 first-principles GCM is most encouraging at low latitudes. There are day-to-day 536 differences throughout each month at each of the stations. Yet, the model again produces 537 less variability than found in observations, at times by factors of 2 or 3, when judged by 538 standard deviations about a monthly mean. As auroral input sources do not dominate the 539 effects at low latitudes, we suggest that yet more work is needed on specifying coupling from below. 540

541

542 6. Summary and Conclusions.

543

544 This paper reports the first detailed modeling of the low latitude F2 layer with the

545 Thermosphere-Ionosphere-Mesosphere-Electrodynamics Coupled Model TIME-GCM,

546 coupled to the NCEP lower atmosphere model. The modeled noontime NmF2 at

547	Ascension Island and Darwin for the year 2002 matches the general trend of the data
548	fairly well throughout the year. However, the modeled NmF2 at Jicamarca (2 degrees
549	from the magnetic equator) is about double the observed NmF2, so the equatorial trough
550	is shallower in the model than is actually observed. In the equatorial zone, the model
551	results depend heavily on the neutral wind and electric field patterns, which are
552	calculated self-consistently, and these require that conditions at lower altitudes are
553	represented correctly. Thus, the detailed model versus data comparisons of the seasonal
554	and local-time variations of electron density (Section 3) do not really test the
555	sophisticated dynamics and photochemistry incorporated in the TIME-GCM.
556	
557	Finally, for variability patterns, at all three sites the actual day-to-day variability of NmF2
558	is noticeably greater than the modeled variability. Again, we suspect that this short fall
559	arises because of an under portrayal of influences at lower heights in the atmosphere.
560	This difficulty of accounting for observed variability is quite often encountered in
561	ionospheric modeling.
562	
563	
564	
565	
566	
567	
568	
569	

570 Acknowledgements.

- 571 We are most grateful to Ben Foster at NCAR for his assistance with the TIME-GCM-
- 572 NCEP calculations and for providing model output for comparisons with ionosonde
- 573 stations. We thank the World Data Centres A and C1 for Solar-Terrestrial Physics in
- 574 Boulder (CO) and in Chilton (UK) for making ionosonde data available for studies such
- 575 as this. The work at Boston University was supported, in part, by a grant from the
- 576 Aeronomy Program of the US National Science Foundation (NSF). The NCAR
- 577 modeling efforts are supported by grants from the NSF.

5	0	Λ
J	2	+

595	Abdu, M. A., Batista, I. S., Reinisch, B. W., Carrasco, A. J., 2004. Equatorial F-layer
596	heights, evening prereversal electric field and night E-layer density in the
597	American sector: IRI validation with observations. Advances in Space Research
598	34, 1953-1965.
599	
600	Adeniyi, J. O., Adimula, I. A., 1995. Comparing the F2-layer model of IRI with
601	observations at Ibadan. Advances in Space Research 15, 1441-1444.
602	
603	Adeniyi, J. O., Bilitza, D., Radicella, S. M., Willoughby, A. A., 2003. Equatorial F2-
604	peak parameters in the IRI model. Advances in Space Research 31, 507-512.
605	
606	Anderson, D. N., 1973a. A theoretical study of the ionospheric F region equatorial
607	anomaly, I. Theory. Planetary and Space Science 21, 409-419.
608	
609	Anderson, D. N., 1973b. A theoretical study of the ionosphere F region equatorial
610	anomaly, II. Results in the American and Asian sectors. Planetary and Space
611	Science 21, 421-442.
612	
613	Anderson, D. N., 1981. Modeling the ambient, low latitude R-region ionosphereA
614	review. Journal of Atmospheric and Terrestrial Physics 43, 753-761.
615	

616	Anderson, D. N., Klobuchar, J. A. 1983. Modeling the total electron content
617	observations above Ascension Island. Journal of Geophysical Research 88, 8020-
618	2024.
619	
620	Batista, I. S., Abdu, M. A., 2004. Ionospheric variability at Brazilian low and equatorial
621	latitudes: comparison between observations and IRI model. Advances in Space
622	Research 34, 1894-1900.
623	
624	Hagan, M. E., Burrage, M. D., Forbes, J. M., Hackney, J., Randel, W. J., Zhang, X.,
625	1999. GSWM-98: Results from migrating solar tides, Journal of Geophysical
626	Research 104(A4), 6813-6828.
627	
628	Bilitza, D., 2001. International Reference Ionosphere 2000. Radio Science 36, 261-275.
629	
630	Bilitza, D., 2003. International Reference Ionosphere 2000: examples of improvements
631	and new features. Advances in Space Research 31, 757-767.
632	
633	Colerico, M. J., Mendillo, M., Fesen, C. G., Meriwether, J., 2006. Comparative
634	investigations of equatorial electrodynamics and low-to-mid latitude coupling of
635	the thermosphere-ionosphere system. Annales Geophysicae 24, 503-513.
636	

637	Fesen, C. G., Roble, R. G., Richmond, A. D., Crowley, G., Fejer, B. G., 2000.
638	Simulations of the pre-reversal enhancement in the low-latitude vertical ion drift.
639	Geophysical Research Letters 27, 1851-1854.
640	
641	Fesen, C. G., Hysell, D. L., Meriwether, J. M., Mendillo, M., Fejer, B. G., Roble, R. G.,
642	Reinisch, B. W., Biondi, M. A., 2002. Modeling the low-latitude thermosphere
643	and ionosphere. Journal of Atmospheric and Terrestrial Physics 64, 1337-1349.
644	
645	Hedin, A. E., Reber, C. A, Newton, G. P., Spencer, N. W., Brinton, H. C., Mayr, H. G.,
646	Potter, W. E., 1977. A global thermospheric model based upon spectrometer and
647	incoherent scatter data, MSIS. Journal of Geophysical Research 82, 2137-2156.
648	
649	Lee, C.C., Reinisch, B. W., 2006. Quiet-condition hmF2, NmF2, and Bo variations at
650	Jicamarca and comparison with IRI-2001 during solar maximum. Journal of
651	Atmospheric and Terrestrial Physics 68, 2138-2146.
652	
653	Lee, C. C., Reinisch, B. W., Su, SY., Chen, W. S., 2008. Quiet-time variations of the
654	F2-layer parameters at Jicamarca and comparison with the IRI-s001 during solar
655	minimum. Journal of Atmospheric and Terrestrial Physics 70, 184-192.
656	
657	Lu, G., Pi, XQ., Richmond, A. D., Roble, R. G., 1998. Variations of total electron
658	content during geomagnetic disturbances: A model/data observation comparison.
659	Geophysical Research Letters 25, 253-256.

661	Mendillo, M., 2006. Storms in the ionosphere: Patterns and processes for total electron
662	content. Reviews of Geophysics 47, RG4001, doi:10.1029/2005RG000193.
663	
664	Mendillo, M., Rishbeth, H., Roble, R., Wroten, J., 2002. Modelling F2-layer seasonal
665	trends and day-to-day variability driven by coupling with the lower atmosphere.
666	Journal of Atmospheric and Terrestrial Physics 64, 1911-1931.
667	
668	Meriwether, J., Faivre, M., Fesen, C., Sherwood, P., Veliz, O., 2008. New results on
669	equatorial thermospheric winds and the midnight temperature maximum, Annales
670	Geophysicae 26, 447-466.
671	
672	Obrou, O. K., Bilitza, D., Adeniyi, J. O., Radicella, S. M., 2003. Equatorial F2 layer peak
673	height and correlation with vertical ion drift and M(3000)F2. Advances in Space
674	Research 31, 513-520.
675	
676	Prölss, G., 1995. Ionospheric F-region storms, in Handbook of Atmospheric
677	Electrodynamics, vol. 2, edited by H. Volland, chap. 8, 195-248, CRC Press,
678	Boca Raton, FL.
679	
680	Randel, W. J., 1992. Global atmospheric circulation statistic, 1000-1 mb, NCAR Tech.
681	Rpt 366, Boulder, Colorado.
682	

683	Rishbeth, H., 1998. How the thermospheric circulation affects the ionospheric F2-layer,
684	Journal of Atmospheric and Terrestrial Physics 60, 1385-1402.
685	
686	Rishbeth, H., 1975. F-region storms and thermospheric circulation. Journal of
687	Atmospheric and Terrestrial Physics 37, 1055-1064.
688	
689	Rishbeth, H., Fuller-Rowell, T. J., Rees, D., 1987. Diffusive equilibrium and vertical
690	motion in the thermosphere during a severe magnetic storm: a computational
691	study. Planetary and Space Science 35, 1157-1165.
692	
693	Rishbeth, H., Garriott, O. K., 1969. Introduction to Ionospheric Physics, Academic Press,
694	New York.
695	
696	Rishbeth, H., Mendillo, M, 2001. Patterns of F2-layer variability. Journal of
697	Atmospheric and Terrestrial Physics 63, 1661-1680.
698	
699	Rishbeth, H., Roble, R., Wroten, J., Mendillo, M., submitted 2008. Modelling the mid-
700	latitude ionospheric F2-layer for year 2002 with the TIME-GCM coupled model.
701	Journal of Atmospheric and Terrestrial Physics.
702	
703	Roble, R. G., 2000. On the feasibility of developing a global atmospheric model
704	extending from the ground to the exosphere, in Atmospheric Science Across the
705	Stratopause, Geophysical Monograph 123, American Geophysical Union, 53-67.

707	Sipler, D. P., Biondi, M. A., 1978. Equatorial F region neutral winds from nightglow O I
708	NM Doppler shifts. Geophysical Research Letters 5, 373-376.
709	
710	Sipler, D. P., Biondi, M. A., Roble, R. G., 1983. F-region neutral winds and temperatures
711	at equatorial latitudes: Measured and predicted behavior during geomagnetically
712	quiet conditions. Planetary and Space Science 31, 53-66.
713	
714	Woodman, R. F., 1970. Vertical drift velocities and east-west electric fields at the
715	magnetic equator. Journal of Geophysical Research 31, 6249-6259, 1970.
716	
717	
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	

729 Figure Captions

731	Figure 1. Observations of hourly values of NmF2 sorted by month for the year 2002
732	from three ionosonde stations: (a) Jicamarca (Peru), (b) Ascension Island (Atlantic
733	Ocean) and (c) Darwin (Australia). All data are shown in universal time (UT), with
734	markers on the lower axes showing local noon (open arrow) and local midnight (solid
735	arrow).
736	
737	Figure 2. TIME-GCM/NCEP model output for the three ionosonde sites shown in Figure
738	1 using the same format of hourly values in UT, with indicators for local noon and
739	midnight. The shading in each panel gives the observed NmF2 monthly mean $\pm \sigma$ to aid
740	in comparisons with Figure 1.
741	
742	Figure 3. A comparison of noontime behavior of NmF2 from observations and model for
743	the full year 2002 (top panel) at (a) Jicamarca, (b) Ascension Island, and (c) Darwin. In
744	each figure, lower panels give model output at the height of maximum electron density of
745	three parameters used in interpretation of results: the O/N_2 ratio, the meridional neutral
746	wind (in m/s, positive equatorward), and vertical drift due to electric fields (in m/s,
747	positive upward).
748	
749	Figure 4. A summary of solar flux (using the F10.7 index) and planetary geomagnetic
750	activity (using the daily index Ap) for the year 2002. Each point is a daily value.
751	

752	Figure 5. 11-day segments of the year 2002 used to portray variability levels of
753	geomagnetic activity, the ionosphere's NmF2, and the photochemical parameter O/N_2 . In
754	all three panels, the top two rows give the 11-day means for Ap and its standard deviation
755	in percent over the full year. The top panel compares these $\langle Ap \rangle_{11-day}$ and $\sigma(Ap, \%)$ with
756	the observed 11-day noontime variability $\sigma(NmF2, \%)$ at three stations: J (Jicamarca), AI
757	(Ascension Island) and D (Darwin). Using the same format, the second panel gives the
758	model's results for noontime variability of NmF2, and the third panel gives the model's
759	noontime variability of O/N_2 . Note that the single color bar is used for units
760	of $\langle Ap \rangle_{11-day}$ and the standard deviations (in %) of the 11-day means of Ap, NmF2 and
761	O/N ₂ .

Figure 6. For the month of April 2002, daily values of the geomagnetic index Ap are
given, with the five most quiet days (QQ) and the five disturbed days (DD) indicated.

766 Figure 7. A comparison of ionospheric variability at Jicamarca using diurnal curves of 767 several parameters for the 5 geomagnetic most quiet (QQ) and the 5 geomagnetic most 768 disturbed (DD) days in the month of April 2002. The top panel (left) shows observed 769 NmF2 (dotted green) curves and model NmF2 (solid green) curves for the QQ days. The 770 right panel gives the observed (orange dotted) curves and the model (solid orange) curves 771 for the DD days. The lower three panels use the same color coding to portray the QQ and 772 DD patterns for the parameters O/N_2 , meridional neutral winds (U_n) and vertical ExB 773 drift (V_z). The shadings give the monthly mean $\pm 1\sigma$ (standard deviation) from the model 774 output of the month.

